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1 Running lilypond

This chapter details the technicalities of running LilyPond.

1.1 Normal usage

Most users run LilyPond through a GUI,; if you have not done so already, please read the Section
“Tutorial” in Learning Manual. If you use an alternate editor to write LilyPond files, see the
documentation for that program.

1.2 Command-line usage

This section contains extra information about using LilyPond on the command line. This may
be desirable to pass extra options to the program. In addition, there are certain extra ‘helper’
programs (such as midi21y) which are only available on the command line.

By ‘command line’, we mean the command line in the operating system. Windows users
might be more familiar with the terms ‘DOS shell’ or ‘command shell’. macOS users might be
more familiar with the terms ‘terminal’ or ‘console’.

Describing how to use this part of an operating system is outside the scope of this manual;
please consult other documentation on this topic if you are unfamiliar with the command line.

The PATH environment variable
[You can skip this section if you use a package manager like MacPorts to install LilyPond; PATH
should already be set up correctly.]

Throughout the LilyPond manuals, examples simply show 1ilypond as the program to call.
However, this only works if the PATH environment variable is adjusted so that LilyPond’s binary
directory is included.

Assuming that you have unpacked a LilyPond binary package for version 2.25.13 within a
directory /home/me, the binary directory to be added to PATH is

/home/me/1lilypond-2.25.13/bin
On Windows, a typical directory might be
C:\Users\me\lilypond-2.25.13\bin

Please consult the documentation for your operating system (or do a search in the internet)
how to actually modify PATH. In case you are updating from an older LilyPond version you
should ensure that the old LilyPond binary directory is removed from PATH; after everything is
done you can check with a call to 1ilypond --version whether the correct version gets found
on the command line.

If, for whatever reason, adjusting PATH is not possible or appropriate, or if you have multiple
LilyPond versions installed in parallel, use the full path to the binary, for example

/home/me/1lilypond-2.25.13/bin/lilypond music.ly

Invoking lilypond
The 1ilypond executable may be called as follows from the command line.
lilypond [option]... file...

When invoked with a file name that has no extension, the .1y extension is tried first. To
read input from stdin, use a dash (-) for file.

Note: On Windows prior to Windows 10 1903, LilyPond cannot handle
Unicode file names.
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When filename.ly is processed it produces filename.pdf as output by default. Several
files can be specified; they are each processed independently.*

If filename.ly contains more than one \book block, the rest of the scores is output in
numbered files, starting with filename-1.pdf. See Section “Output file names” in Notation
Reference how to change the output file name and the file name suffix.

Using LilyPond with standard shell features
Since LilyPond is a command-line application, features of the ‘shell’ used for calling LilyPond
can also be put to good use.
For example,
lilypond *.1ly
processes all LilyPond files in the current directory.
Redirecting the console output (e.g., to a file) may also be useful:

lilypond file.ly 1> stdout.txt
lilypond file.ly 2> stderr.txt
lilypond file.ly &> all.txt

The above commands divert ‘normal’ output, ‘errors’ only, or ‘everything’, respectively, to text
files. Consult the documentation for your particular shell, Command (Windows), Terminal or
Console applications (macOS) to check whether output redirection is supported or if the syntax
is different.

The following example searches and processes all input files in the current directory and all
directories below it recursively. The output files are located in the same directory that the
command was run in, rather than in the same directories as the original input files.

find . -name '*.ly' -exec lilypond '{}' \;
This should also work for macOS users.
A Windows user would run
forfiles /s /M *.1ly /c "cmd /c lilypond @file"
entering these commands in a command prompt usually found under Start > Accessories >
Command Prompt, or by typing in the search window ‘command prompt’.
Alternatively, an explicit path to the top-level of your folder containing all the sub-folders
that have input files in them can be stated using the /p option;
forfiles /s /p C:\Documents\MyScores /M *.ly /c "cmd /c lilypond @file"

If there are spaces in the path to the top-level folder, then the whole path needs to be inside
double quotes;

forfiles /s /p "C:\Documents\My Scores" /M *.ly /c "cmd /c lilypond @file"

Basic command-line options for LilyPond

Please bear in mind that option arguments with spaces in it must be quoted. For example,
to write LilyPond’s output to a directory called ‘foo bar’, a user must add -o "foo bar" (or
--output="foo bar") to the command-line arguments of 1ilypond. Double quotes around such
arguments work with virtually all command-line interpreters on both Windows and Unix-like
operating systems (including macOS).

The following options are supported.

-d, --define-default=var[=val
See [Advanced command-line options for LilyPond], page 6.

1 The status of Guile is not reset after processing a .1y file, so be careful not to change any system defaults
from within Scheme.
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-e, ——evaluate=expr
Evaluate the Scheme expression expr before parsing any .1ly files. Multiple -e
options may be given, they are evaluated sequentially.

The expression is evaluated in the guile-user module, so if you want to use a
definition like (define-public a 42) as expr, use

lilypond -e "(define-public a 42)"
on the command line, and include
#(use-modules (guile-user))
at the top of the .1y file.

-E, ——eps Generate EPS files.
This option is equivalent to specifying -dseparate-page-formats=eps
—dtall-page-formats=eps.
-f, -——format=format
The format of the (main) output file or files. Possible values for format are ps, pdf,
png or svg.
Example: 1ilypond -fpng foo.ly
SVG internally uses a specific backend, and therefore cannot be obtained in the
same run as other formats; using -fsvg or --svg is actually equivalent to using the
-dbackend=svg option. See [Advanced command-line options for LilyPond], page 6.
~h, ——help
Show a summary of usage.
-H, -—~header=field
Dump a header field to file BASENAME. field.
As an example, let’s assume that you have an input file foo.1ly containing

\header { title = "bar" }
\score { c1 }

The command
lilypond -H title foo.ly
then creates a plain text file foo.title containing the string bar.
-i, ——init=file
Set init file to file (default: init.1ly).
-1, ——include=directory

Append directory to the search path for input files with relative paths. By default,
only the current working directory gets searched.

Multiple -T options may be given. The search starts in the current working directory,
and if the file to be included is not found the search continues in the directory given
by the first - option, then the directory in the second -I option, and so on.

Note: Using the tilde character (~) with the -I switch
may produce unexpected results in some shells.

Windows users need to include a trailing slash for the di-
rectory’s path.

-j, ——jail=user,group,jail,, dir
[This option is only available if your operating system supports the chroot function-
ality. In particular, Windows doesn’t support it.]
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Run lilypond in a chroot jail.

The --jail option can be used for security when LilyPond formatting is being pro-
vided via a web server, or whenever LilyPond executes commands sent by external
sources (see [Advanced command-line options for LilyPond], page 6). Because Lily-
Pond provides the ability to run Guile programs, it is essential in such scenarios to
run it in a sandboxed way so that the file being compiled does not wreak havoc on
the system, for example with

% too dangerous to write correctly

#(s ystem "rm -rf /")

% malicious but not destructive

{ c4"$(ly:gulp-file "/etc/passwd") 7}
--jail is one way to achieve sandboxing. Another one is running LilyPond in a
Docker container.

The --jail option works by changing the root of 1ilypond to jail just before start-
ing the actual compilation process. The user and group are then changed to match
those provided, and the current directory is changed to dir. This setup guarantees
that it is not possible (at least in theory) to escape from the jail. Note that for
--jail to work, 1ilypond must be run as root, which is usually accomplished in a
safe way using sudo.

Setting up a jail can be a relatively complex matter, as we must be sure that
LilyPond is able to find whatever it needs to compile the source inside the jail itself.
A typical chroot jail comprises the following steps:

Setting up a separate filesystem

A separate filesystem should be created for LilyPond, so that it can
be mounted with safe options such as noexec, nodev, and nosuid. In
this way, it is impossible to run executables or to write directly to a
device from LilyPond. If you do not want to create a separate partition,
just create a file of reasonable size and use it to mount a loop device.
A separate filesystem also guarantees that LilyPond cannot write more
space than it is allowed.

Setting up a separate user
A separate user and group (say, 1ily/1lily) with low privileges should
be used to run LilyPond inside the jail. There should be a single direc-
tory writable by this user, which should be passed in dir.

Preparing the jail
LilyPond needs to read a number of files while running. All these files
are to be copied into the jail, under the same path they appear in the
real root filesystem. The entire content of the LilyPond installation
(e.g., /usr/share/lilypond) should be copied.

If problems arise, the simplest way to trace them down is to run Lily-
Pond using strace, which allows you to determine which files are miss-
ing.

Running LilyPond
In a jail mounted with noexec it is impossible to execute any external
program. Therefore LilyPond must be run with a backend that does not
require any such program. As we have already mentioned, it must be run
with supernotation privileges (which, of course, it loses immediately),
possibly using sudo. It is also good practice to limit the number of
seconds of CPU time LilyPond can use (e.g., using ulimit -t), and, if
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-1, -—loglevel=level

your operating system supports it, the amount of memory that can be
allocated. See [LilyPond in chroot jail], page 13, for more.

Set the verbosity of the console output to level. Possible values are:

NONE
ERROR
WARN

No output at all, not even error messages.
Only error messages, no warnings or progress messages.

Warnings and error messages, no progress.

BASIC_PROGRESS

PROGRESS
INFO

DEBUG

-0, ——output=file
-0, ——output=folder

Basic progress messages (success), warnings and errors.
All progress messages, warnings and errors.

Progress messages, warnings, errors and further execution information.
This is the default.

All possible messages, including verbose debug output.

Set the default output file to file or, if a folder with that name exists, direct the
output to folder, taking the file name from the input file. The appropriate suffix is
added (e.g., .pdf for PDF) in both cases.

-0, ——-pspdfopt=key

Set the PS/PDF output optimization to key. Possible values are:

size

TeX

TeX-GS

Generate a very small PS/EPS/PDF document. This is the default.

Using this value is equivalent to setting LilyPond’s Scheme command-
line options -dmusic-font-encodings="#f" and -dgs-never-embed-
fonts="#f".

Produce files that are optimized for inclusion in pdfTEX, LuaTEX, or
XeTEX documents.

Using this value is equivalent to setting LilyPond’s Scheme command-
line options -dmusic-font-encodings="#t" and -dgs-never-embed-
fonts="#f".

If you want to include more than one PDF generated by LilyPond in a
TeX document, use this option and postprocess the PDF generated by
TeX with Ghostscript.

Using this value is equivalent to setting LilyPond’s Scheme command-
line options -dmusic-font-encodings="#t" and -dgs-never-embed-
fonts="#t".

--ps Generate PostScript. This option is equivalent to -fps.

-—png Generate pictures of each page, in PNG format. This option is equivalent to -fpng.

The resolution of the image may be set to N DPI with

—dresolution=N

——pdf Generate PDF. This is the default, being equivalent to —fpdf.

-s, ——silent

Show no progress, only error messages. This is equivalent to ~1ERROR.

-—svg Generate SVG files for each page. This option is equivalent to -fsvg.
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-V, ——version
Show version information.

-V, ——verbose
Be verbose: show full paths of all files read, give timing information, etc. It is
equivalent to -1DEBUG.

-wW, ——warranty
Show the warranty with which GNU LilyPond comes. (It comes with NO WAR-
RANTY!)

Advanced command-line options for LilyPond

Option -d is the command-line interface to LilyPond’s Scheme function 1y:set-option. This
means that all options listed here can also be set within .1y files.

-d, --define-default=option-name|=value]

-d, --define-default=no-option-name
Set the equivalent internal Scheme symbol option-name to value. For example, the
command-line option

—-dbackend=svg
is equivalent to
#(1ly:set-option 'backend 'svg)
in a LilyPond input file.
If value is not supplied, use #t as the value. The prefix no- may be added to
option-name to switch ‘off” an option, providing #f as the value. For example,
—dpoint-and-click="#f"
is the same as
—-dno-point-and-click

[Note that the ‘#’ character introduces a comment in many shells. For this reason it is
recommended to always quote expressions that contain it.]

The following table lists all supported option names together with its values. Within Scheme
code, option values can be read using function 1y:get-option.

anti-alias-factor num
Render at a higher resolution (using factor num, which must be a positive integer
< 8) and scale down the result to prevent ‘jaggies’ in PNG images. Default: 1.

aux-files bool
If bool is #t, create .tex, .texi, and .count files. This option is primarily for use
by 1ilypond-book. Default: #f.

backend symbol
Use symbol as the backend for LilyPond output. Possible values are:

ps This is the default setting. PostScript files include TTF, Typel, and
OTF fonts. No ‘subsetting’ of these fonts is done. Be aware that using
‘oriental’ character sets like Japanese can lead to very large file sizes.

For PDF output, the ps backend is used, too; the resulting PS data
is post-processed by Ghostscript’s ps2pdf script, which also does font
subsetting by default.

cairo This creates graphics output throught the Cairo library. This backend
can output PS, EPS, PDF, PNG, and SVG.
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svg Scalable Vector Graphics. A single SVG file is created for every page
of output. Music glyphs are encoded as vector graphics, but text fonts
are not embedded in the SVG files. Any SVG viewer will therefore need
the relevant text fonts to be available to it for proper rendering of both
text and lyrics. It is recommended to not use font ‘lists’ or ‘aliases’ in
case an SVG viewer is unable to handle them.

clip-systems bool
If bool is #t, extract music fragments out of a score. This requires that the
clip-regions function has been defined within the \layout block. See Section
“Extracting fragments of music” in Notation Reference. No fragments are extracted
though if used with the -dno-print-pages option. Default: #f.

compile-scheme-code bool
Use the Guile compiler to run Scheme code, instead of the evaluator. For more
information, see Section “Debugging Scheme code” in Extending.

crop bool If bool is #t, a second PDF file gets created (with extension .cropped.pdf), to-
gether with a rendered image of it (with extension .cropped.png). This output file
fits all the music and headers, without margins, into a single, possibly tall page. If
option --svg is set, an additional SVG file (with extension .cropped.svg) is pro-
duced instead. If option —-eps or —-ps is set, a cropped EPS file (with extension
.cropped.eps) is produced instead of a cropped PDF. Default: #£.

As a feature of LilyPond, the dimensions of the cropped output file are always
rounded up to integer (PostScript) big points; this might cause a little bit of white-
space at the right margin. To avoid that, set the 1ine-width paper variable to an
integer big point value like 450\bp.

Note that currently this option is not well suited for multi-system output since
vertical space between systems gets removed.

datadir string
Prefix for data files. This is a read-only option; setting it has no effect.

debug-eval bool
If bool is #t, use the debugging Scheme evaluator, which prints backtraces with line
numbers on errors. Default: #f, or #t when using --verbose.

debug-skylines bool
If bool is #t, debug skylines. Default: #f.

delete-intermediate-files bool
If bool is #t, delete the unusable, intermediate .ps files created during compilation.
Default: #t.

embed-source-code bool
If bool is #t, embed the LilyPond source files inside the generated PDF document.
Default: #f.

eps—box—-padding num
Pad left edge of the output EPS bounding box by num millimeters. Default: #f
(meaning no bounding box padding).

first string
Only show music with a length given by string at the beginning. This is equivalent
to

showFirstLength = string
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if inserted at the beginning of the input file. If both -dfirst and showFirstLength
are set, the command-line option takes precedence. See Section “Extracting frag-
ments of music” in Notation Reference. Default: #f.

font-export-dir string
Set directory for exporting fonts as PostScript files to string. This is useful when
you want to create a PDF without embedded fonts first and later embed the fonts
with Ghostscript as shown below.

$ lilypond -dfont-export-dir=fontdir \
—-dgs—never—embed-fonts foo.ly
$ gs -q -dBATCH -dNOPAUSE -sDEVICE=pdfwrite \
-sOutputFile=foo.embedded.pdf foo.pdf fontdir/*.font.ps

Note: Unlike font-ps-resdir, this method cannot embed CID fonts with Ghost-
script 9.26 and later.

Note: Similar to font-ps-resdir, this option skips TrueType fonts because embed-
ding TrueType fonts might cause garbled characters. To avoid garbling characters,
use gs-never-embed-fonts, as this embeds TrueType fonts despite its name.

Default: #f (meaning no export directory).

font-ps-resdir string
Set directory (as string) to build a subset of the PostScript resource directory to
be used for embedding fonts later. This is useful when you want to create a PDF
without embedded fonts first and later embed the fonts with Ghostscript as shown
below.

$ lilypond -dfont-ps-resdir=resdir \
-dgs-never-embed-fonts foo.ly
$ gs -q -dBATCH -dNOPAUSE -sDEVICE=pdfwrite \
-I resdir -I resdir/Font \
—-sOutputFile=foo.embedded.pdf foo.pdf

Note: It is better not to specify a directory that contains the name Resource because
it has a special meaning when specified with the -T option for Ghostscript.

Note: Unlike font-export-dir, this method can embed CID fonts with Ghostscript
9.26 and later.

Note: Similar to font-export-dir, this option skips TrueType fonts because embed-
ding TrueType fonts might cause garbled characters. To avoid garbling characters,
use gs-never-embed-fonts, as this embeds TrueType fonts despite its name.

Default: #f (meaning no subset directory).

gs-load-fonts bool
If bool is #t, load fonts via Ghostscript. This option makes LilyPond’s output
files contain only references to all fonts, which must be resolved to real fonts in a
post-processing step by Ghostscript. Default: #f.

gs—load-lily-fonts bool
If bool is #t, load LilyPond fonts via Ghostscript. This option makes LilyPond’s
output files contain only references to its music fonts, which must be resolved to
real fonts in a post-processing step by Ghostscript. All other fonts are still output
as usual. Default: #f.

gs-never-embed-fonts bool

If bool is #t, make Ghostscript embed only TrueType fonts and no other font format.
Default: #f.
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help bool If bool is #t, show a help screen and exit. Default: #f.

include-book-title-preview bool
If bool is #t, include book titles in preview images. Default: #t.

include-eps-fonts bool
If bool is #t, include fonts in separate-system EPS files. Default: #t.

include-settings string
Include file string for global settings, which is included before the score is processed.
This option can be passed multiple times to include several files. Default: not set
(meaning no global settings file).

job-count num
Process in parallel, using num jobs (num being a positive integer). Default: #f
(meaning no parallel processing).

last string
Only show music with a length given by string at the end. This is equivalent to

showLastLength = string

if inserted at the beginning of the input file. If both ~dlast and showLastLength are
set, the command-line option takes precedence. See Section “Extracting fragments
of music” in Notation Reference. Default: #f.

log-file string
Redirect output to the log file string.log. Default: #f (meaning no log file).

max-markup-depth num
Set maximum depth for the markup tree to value num (being a non-negative integer).
If a markup has more levels, assume it will not terminate on its own, print a warning,
and return a null markup instead. Default: 1024.

midi-extension string
Set the default file extension for MIDI output files to .string. Default: "midi".

music-strings-to-paths bool
If bool is #t, convert text strings to paths when glyphs belong to a music font.
Default: #f.

paper-size string
Set default paper size to string. Default: "a4".

pixmap-format string
Set Ghostscript’s output format for pixel images to string. Default: "pnglém".

png-width width

png-height height
For PNG output, set the width and height (in pixels) of the created image file. If
one of the options is missing, the other dimension is computed according to the
EPS bounding box, retaining the aspect ratio. Both width and height must be
non-negative integers.

In addition to --png, either --eps, -dcrop, or —-dpreview should be used to get
proper image scaling without clipping.
Option -dresolution is ignored.

Note that there is a bug in Ghostscript versions up to 9.52 for these two options: It
produces empty PNG images if the height is larger than the width.

Default: 0 for both width and height (meaning both dimensions are derived from
the EPS bounding box).
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point-and-click value
If value is #t, add ‘point & click’ links to PDF and SVG output.

There are more possible option values; see Section 4.1 [Point and click], page 45.
Default: #t.

preview bool
If bool is #t, create preview images in addition to normal output. Default: #f.

For input file name file and output format fmt, it generates an output file having
the name file.preview.fmt, containing the titles and the first system of music. If
\book or \bookpart blocks are used, the titles of \book, \bookpart or \score will
appear in the output, including the first system of every \score block if the \paper
variable print-all-headers is set to #t.

To suppress the usual output, use the ~dprint-pages or —~dno-print-pages options
according to your requirements.

print-pages bool
If bool is #t, generate full pages. Default: #t.

Option -dno-print-pages is useful in combination with -dpreview or —dcrop.

protected-scheme-parsing bool
If bool is #t, continue when errors in inline Scheme code are caught in the parser.
If set to #f, halt on errors and print a stack trace. Default: #t.

read-file-1list bool
If bool is #t, handle all file arguments on the command line as lists of LilyPond
input files to be processed, with one input file per line in these lists. Default: #f.

relative-includes bool
When processing an \include command, look for the included file relative to the
current file if bool is #t. If set to #f, look for the file relative to the root file. Default:
#t.

resolution num
Set resolution for generating PNG pixmaps to num dpi (which must be a positive
number). Default: 101.

separate-log-files bool
For input files filel.ly, file2.ly, ..., output log data to files filel.log,
file2.log, ..., if bool is #t. Default: #f.

separate-page-formats string
Comma-separated list of formats (svg, pdf, png, or eps) to use for the separate page
images in 1ilypond-book. See Section 4.4.4 [Other programs]|, page 52. Default:
#t.

show-available-fonts bool
If bool is #t, list available font names as delivered by the fontconfig library. Ap-
pended to this list LilyPond displays the configuration settings of fontconfig itself.
Default: #f.

staff-size num
Set global staff size to num points (which must be a positive number). This is
equivalent to

#(set-global-staff-size num)
if inserted at the beginning of the input file. Default: 20 pt.
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strip-output-dir bool
If bool is #t, don’t use the directory part from input file paths while constructing
output file names. Default: #t.

strokeadjust bool
If bool is #t, force PostScript stroke adjustment. This option is mostly relevant
when a PDF is generated from PostScript output (stroke adjustment is usually
enabled automatically for low-resolution bitmap devices). Without this option, PDF
previewers tend to produce widely inconsistent stem widths at resolutions typical
for screen display. However, the option does not noticeably affect print quality and
causes large file size increases in PDF files. Default: #f.

tall-page-formats string
Comma-separated list of formats (svg, pdf, png, or eps) to use for the ‘tall page’
image in 1ilypond-book. See Section 4.4.4 [Other programs|, page 52. Default: #f.

use-paper-size-for-page bool
If bool is #t, each page is set to the paper size, possibly cropping parts that extend
beyond the paper. Setting it #f resizes the page to contain the content as necessary.
Default: #t.

verbose bool
Verbosity level. This is a read-only option; setting it has no effect.

warning-as-error bool
If bool is #t, change all warning and ‘programming error’ messages into errors.
Default: #f.

Environment variables
lilypond recognizes the following environment variables:

LILYPOND_DATADIR
This specifies a directory where locale messages and data files are looked up by
default, overriding locations defined either at compile-time or computed dynamically
at run-time (see [Relocation], page 12). The directory should contain subdirectories
called 1y, ps, tex, etc.

LILYPOND_ LOCALEDIR
Specify the directory where locale-specific files are located. This overrides the value
derived from LILYPOND DATADIR.

LILYPOND_RELOCDIR
Specify the directory where relocation files are located. This overrides the value
derived from the location of the 1ilypond binary.

LANG The language for LilyPond data sent to stdout and stderr, for example progress
reports, warning messages, or debug output. Example: LANG=de.

LILYPOND_ LOGLEVEL
The default loglevel. If LilyPond is called without an explicit loglevel (i.e., no
--loglevel command-line option), this value is used.

LILYPOND GC_YIELD
A variable, as a percentage, that tunes memory management behavior. A higher
value means the program uses more memory, a smaller value means more CPU time
is used. The default value is 70.

TMPDIR This specifies the temporary directory in GNU/Linux and macOS. Default is /tmp.
It is the directory where intermediate files (such as PostScript files) are saved during
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compilation. Overriding this variable might be useful, for example, if the user
running lilypond does not have write access to the default temporary directory.
Example: TMPDIR=~/foo.

Relocation

Most programs in the Unix world use default directories for its data that are determined at
configure time before compilation. LilyPond is no exception; for example, a typical installation
puts the 1ilypond binary into /usr/bin and all files specific to LilyPond into subdirectories of
/usr/share/lilypond/2.25.13/ (assuming that the current version is 2.25.13).

While this approach works fine for manual compilation and platforms that come with stan-
dardized package managers, it can cause issues where such managers are not common or not
used by default. Typical examples of such platforms are Windows and macOS, where users
expect that application bundles can be installed anywhere.

The common solution to this problem is relocation support: Instead of using hard-coded
paths to data files, locations of the necessary support files are computed at run time relative to
the executed binary.

Relocation files

There’s actually a second mechanism for run-time configuration: LilyPond heavily relies on
external programs and libraries, in particular the ‘FontConfig’ and ‘Guile’ libraries to find system
fonts and handle Scheme files, respectively, and the gs program to convert PS data to PDF
files. All of them must be configured also to locate its relevant data files. To do that, the
lilypond program parses all files in a directory called relocate (if it exists; see below where
this directory is searched for) to manipulate environment variables, which in turn control those
external libraries and programs. The format of such relocation files is simple; each line has the
syntax

command key=value
and empty lines get ignored.

The command directive is one of the following.

set Uncondionally set environment variable key to value. This overrides a previously
set value.
set? Set environment variable key to value only if key isn’t defined yet. In other words,

it doesn’t override a previously set value.

setdir If value is a directory, unconditionally set environent variable key to value. Other-
wise, emit a warning.

setfile  If value is a file, unconditionally set environent variable key to value. Otherwise,
emit a warning.

prependdir
Prepend directory value to the list of directories in environment variable key. If key
doesn’t exist it gets created.

Environment variables (marked with a leading dollar sign) are allowed in value and get
expanded before the directive is executed.
Here are two examples of relocation file entries.

set? FONTCONFIG_FILE=$INSTALLER_PREFIX/etc/fonts/fonts.conf
prependdir GUILE_LOAD_PATH=$INSTALLER_PREFIX/share/guile/1.8

Multiple lines setting the same environment variable should be avoided in relocation files
since the parsing order of files in the relocate directory is arbitrary.
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Relocation algorithm

LilyPond uses the following algorithm to find its data files.

1.

6.

Compute the directory where the currently executed 1ilypond binary is located. Let’s call
this bindir. Set (internal) environment variable INSTALLER_PREFIX to bindir/.. (i.e., the
parent directory of bindir).

Check environment variable LILYPOND DATADIR. If it is set, use its value for LilyPond’s
data directory, datadir. Otherwise use either $INSTALLER_PREFIX/share/lilypond/
version (with version being the current LilyPond version) or $INSTALLER_PREFIX/share/
lilypond/current.

Check environment variable LILYPOND_ LOCALEDIR. If it is set, use its value for LilyPond’s
locale data directory, localedir. Otherwise use $INSTALLER_PREFIX/share/locale.

Check environment variable LILYPOND_RELOCDIR. If it is set, use its value for the directory of
LilyPond’s relocation files, relocdir. Otherwise use $INSTALLER_PREFIX/etc/relocate.

If datadir doesn’t exist, use a compile-time value instead. Ditto for localedir (but not
for relocdir, since it doesn’t make sense to have that).

If relocdir exists, process all files in this directory (see [Relocation files|, page 12).

LilyPond in chroot jail

Setting up the server to run LilyPond in a chroot jail is a complicated task. The steps are listed
below. Examples in the steps are from Ubuntu GNU/Linux, and may require the use of sudo
as appropriate.

e Install the necessary packages: LilyPond, Ghostscript, and ImageMagick.

e Create a new user by the name of 1ily:

adduser 1lily
This will create a new group for the 1ily user as well, and a home folder, /home/1ily
In the home folder of the 1ily user create a file to use as a separate filesystem:

dd if=/dev/zero of=/home/lily/loopfile bs=1k count= 200000
This example creates a 200MB file for use as the jail filesystem.

Create a loop device, make a file system and mount it, then create a folder that can be
written by the 1ily user:

mkdir /mnt/lilyloop

losetup /dev/loopO /home/lily/loopfile
mkfs -t ext3 /dev/loop0 200000

mount -t ext3 /dev/loop0 /mnt/lilyloop
mkdir /mnt/lilyloop/lilyhome

chown 1ily /mnt/lilyloop/lilyhome

In the configuration of the servers, the JAIL will be /mnt/1ilyloop and the DIR will be
/1lilyhome.

Create a big directory tree in the jail by copying the necessary files, as shown in the sample
script below.

You can use sed to create the necessary copy commands for a given executable:
for i in "/usr/local/lilypond/usr/bin/lilypond" "/bin/sh" "/usr/bin/;
do 1dd $i | sed 's/.*=> \/\C.*x\/ND\N([T(O*\) .*/mkdir -p \1 \&\& \

cp -L \/NIN2 \1\2/"' | sed 's/Nt\/\NCA\/N\NC*\) (.x)$/mkdir -p \
N1 \&\& cp -L \/\1\2 \1\2/' | sed '/.x=>.x/d'; done

\
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Example script for 32-bit Ubuntu 8.04

#!/bin/sh
## defaults set here

username=1ily

home=/home

loopdevice=/dev/loop0

jaildir=/mnt/lilyloop

# the prefix (without the leading slash!)
lilyprefix=usr/local

# the directory where lilypond is installed on the system
lilydir=/$lilyprefix/lilypond/

userhome=$home/$username
loopfile=$userhome/loopfile
adduser $username

dd if=/dev/zero of=$loopfile bs=1k count=200000
mkdir $jaildir

losetup $loopdevice $loopfile

mkfs -t ext3 $loopdevice 200000
mount -t ext3 $loopdevice $jaildir
mkdir $jaildir/lilyhome

chown $username $jaildir/lilyhome
cd $jaildir

mkdir -p bin usr/bin usr/share usr/lib usr/share/fonts $lilyprefix tmp
chmod atw tmp

cp -r -L $lilydir $lilyprefix

cp -L /bin/sh /bin/rm bin

cp -L /usr/bin/convert /usr/bin/gs usr/bin

cp -L /usr/share/fonts/truetype usr/share/fonts

# Now the library copying magic
for i in "$lilydir/usr/bin/lilypond" "$lilydir/usr/bin/guile" "/bin/sh" \
"/bin/rm" "/usr/bin/gs" "/usr/bin/convert"; do 1dd $i | sed 's/.*=> \
NVANCHN/NDNCETA*\) ox/mkdir -p \1 \&\& cp -L \/\1\2 \1\2/' | sed \
's/NEN/NCHAN/NDNC R\ k) $/mkdir -p \1 \&\& cp -L \/\1\2 \1\2/"' \
| sed '/.*=>.%/d'; done | sh -s

# The shared files for Ghostscript...

cp -L -r /usr/share/ghostscript usr/share
# The shared files for ImageMagick

cp -L -r /usr/lib/ImageMagick* usr/lib

### Now, assuming that you have test.ly in /mnt/lilyloop/lilyhome,
### you should be able to run:
### Note that /$lilyprefix/bin/lilypond is a script, which sets the
### LD_LIBRARY_PATH - this is crucial
/$lilyprefix/bin/lilypond -jlily,lily,/mnt/lilyloop,/lilyhome test.ly
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1.3 Error messages

Different error messages can appear while compiling a file:

Warning  Something looks suspect. If you are requesting something out of the ordinary then
you will understand the message, and can ignore it. However, warnings usually
indicate that something is wrong with the input file.

Error Something is definitely wrong. The current processing step (parsing, interpreting,
or formatting) will be finished, but the next step will be skipped.

Fatal error
Something is definitely wrong, and LilyPond cannot continue. This happens rarely.
The most usual cause is misinstalled fonts.

Scheme error
Errors that occur while executing Scheme code are caught by the Scheme inter-
preter. If running with the verbose option (-V or —-verbose) then a call trace of
the offending function call is printed.

Programming error
There was some internal inconsistency. These error messages are intended to help
the programmers and debuggers. Usually, they can be ignored. Sometimes, they
come in such big quantities that they obscure other output.

Aborted (core dumped)
This signals a serious programming error that caused the program to crash. Such
errors are considered critical. If you stumble on one, send a bug-report.

If warnings and errors can be linked to some part of the input file, then error messages have
the following form

filename:lineno:columnno: message
offending input line

A line-break is inserted in the offending line to indicate the column where the error was found.
For example,

test.ly:2:19: error: not a duration: 5
{c'4 e
5g' }

These locations are LilyPond’s best guess about where the warning or error occurred, but
(by their very nature) warnings and errors occur when something unexpected happens. If you
can’t see an error in the indicated line of your input file, try checking one or two lines above the
indicated position.

Please note that diagnostics can be triggered at any point during the many stages of process-
ing. For example if there are parts of the input that are processed multiple times (i.e., in midi
and layout output), or if the same music variable is used in multiple contexts the same message
may appear several times. Diagnostics produced at a ‘late’ stage (i.e., bar checks) might also be
issued multiple times.

See Section 1.4 [Common errors|, page 15, for more information about errors.

1.4 Common errors

The error conditions described below occur often, yet the cause is not obvious or easily found.
Once seen and understood, they are easily handled.
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Music runs off the page

Music running off the page over the right margin or appearing unduly compressed is almost
always due to entering an incorrect duration on a note, causing the final note in a measure to
extend over the bar line. It is not invalid if the final note in a measure does not end on the
automatically entered bar line, as the note is simply assumed to carry over into the next measure.
But if a long sequence of such carry-over measures occurs the music can appear compressed or
may flow off the page because automatic line breaks can be inserted only at the end of complete
measures, i.e., where all notes end before or at the end of the measure.

Note: An incorrect duration can cause line breaks to be inhibited,
leading to a line of highly compressed music or music which flows off
the page.

The incorrect duration can be found easily if bar checks are used, see Section “Bar and bar
number checks” in Notation Reference.

If you actually intend to have a series of such carry-over measures you will need to insert
an invisible bar line where you want the line to break. For details, see Section “Bar lines” in
Notation Reference.

An extra staff appears

If contexts are not created explicitly with \new or \context, they will be silently created as
soon as a command is encountered which cannot be applied to an existing context. In simple
scores the automatic creation of contexts is useful, and most of the examples in the LilyPond
manuals take advantage of this simplification. But occasionally the silent creation of contexts
can give rise to unexpected new staves or scores. For example, it might be expected that the
following code would cause all note heads within the following staff to be colored red, but in
fact it results in two staves with the note heads remaining the default black in the lower staff.

\override Staff.NoteHead.color = #red
\new Staff { a' }

This is because a Staff context does not exist when the override is processed, so one is
implicitly created and the override is applied to it, but then the \new Staff command creates
another, separate, staff into which the notes are placed. The correct code to color all note heads
red is

\new Staff {
\override Staff.NoteHead.color = #red
a 1
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Error message Unbound variable %

This error message will appear at the bottom of the console output or log file together with a
“Guile signalled an error ...” message every time a Scheme routine is called which (invalidly)
contains a LilyPond rather than a Scheme comment.

LilyPond comments begin with a percent sign, (%), and must not be used within Scheme
routines. Scheme comments begin with a semi-colon, (;).

Error message FT_Get_Glyph_Name

This error messages appears in the console output or log file if an input file contains a non-ASCII
character and was not saved in UTF-8 encoding. For details, see Section “Text encoding” in
Notation Reference.

Warning staff affinities should only decrease

This warning can appear if there are no staves in the printed output, for example if there are
just a ChordName context and a Lyrics context as in a lead sheet. The warning messages can
be avoided by making one of the contexts behave as a staff by inserting

\override VerticalAxisGroup.staff-affinity = ##f

at its start. For details, see “Spacing of non-staff lines” in Section “Flexible vertical spacing
within systems” in Notation Reference.
Error message unexpected \new

A \score block must contain a single music expression. If instead it contains several \new
Staff, \new StaffGroup or similar contexts introduced with \new without them being enclosed

in either curly brackets, { ... }, or double angle brackets, << ... >> like this:
\score {
% Invalid! Generates error: syntax error, unexpected \new
\new Staff { ... 7}
\new Staff { ... 7}
+

the error message will be produced.
To avoid the error, enclose all the \new statements in curly or double angle brackets.

Using curly brackets will introduce the \new statements sequentially:

\score {
{
\new Staff { a' a' a' a' }
\new Staff { g' g' g' g' }
}
}
o) | |
) 4 | |
P
o
Vi f —
p. r £ | | |
(R

but more likely you should be using double angle brackets so the new staves are introduced in
parallel, i.e., simultaneously:

\score {
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<<
\new Staff { a' a' a' a'
\new Staff { g' g' g' g'
>>

+
¥

>
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Warning this voice needs a \voiceXx or \shiftXx setting

If notes from two different voices with stems in the same direction occur at the same musical
moment, but the voices have no voice-specific shifts specified, the warning message ‘warning:
this voice needs a \voiceXx or \shiftXx setting’ will appear when compiling the LilyPond
file. This warning will appear even when the notes have no visible stems, e.g., whole notes, if
the stems for shorter notes at the same pitch would be in the same direction.

Remember that the stem direction depends on the position of the note on the staff unless
the stem direction is specified, for example by using \voiceOne, etc. In this case the warning
will appear only when the stems happen to be in the same direction, i.e., when the notes are in
the same half of the staff.

By placing the notes in voices with stem directions and shifts specified, for example by using
\voiceOne, etc., these warnings may be avoided.

Notes in higher numbered voices, \voiceThree, etc., are automatically shifted to avoid clash-
ing note columns. This causes a visible shift for notes with stems, but whole notes are not visibly
shifted unless an actual clash of the note heads occurs, or when the voices cross over from their
natural order (when \voiceThree is higher than \voiceOne, etc.).

See also

Section “Explicitly instantiating voices” in Learning Manual, Section “Real music example” in
Learning Manual, Section “Single-staff polyphony” in Notation Reference, Section “Collision
resolution” in Notation Reference.
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2 Updating files with convert-ly

As LilyPond is improved, the syntax (input language) of some commands and functions can
change. This usually results in unexpected errors, warnings, or even wrong output when input
files, previously created for older versions of LilyPond, are then used with later versions.

To help with this, the convert-1y command can be used to upgrade older input files to the
newer syntax.

2.1 Why does the syntax change?

Syntax changes are often made to make the LilyPond input code simpler for both reading and
writing, but occasionally changes are made to accommodate new features or enhancements to
existing functions.

Here is a real example to illustrate this.

All \paper and \layout property names are supposed to be written in the form first-
second-third. However, in LilyPond version 2.11.60, it was noticed that the printallheaders
property did not follow this convention. Should this property be left alone (confusing new users
with an inconsistent format)? Or should it be changed (annoying old users with existing Lily-
Pond input files)? The decision was eventually made to change the name of the property to
print-all-headers, and by using the convert-1y command old users had a way to automati-
cally update their existing input files.

Unfortunately, the convert-1y command is not capable to manage all syntax changes. For
example, accents and non-English characters were entered using standard IATEX notation in
versions of LilyPond before 2.6; words like ‘Noél’ (which is ‘Christmas’ in French) had to be
entered as No\"el. Starting with LilyPond 2.6, the special letter ‘¢’ must be entered directly as
a UTF-8 character. Because convert-1y cannot convert IXTEX special characters into UTF-8
characters, older LilyPond input files have to be edited manually to take care of that.

The conversion rules of the convert-1y command work by using text pattern matching and
replacement (rather than ‘understanding’ the context of what it is changing within a given input
file). This has several consequences:

e The reliability of the conversion depends on the quality of each applied rule set and on the
complexity of the respective change. Sometimes conversions may require additional, manual
fixes, so the original input files should be kept for comparison just in case.

e Only conversions to newer syntax changes are possible: there are no rule sets to go back
to older versions of LilyPond. As a consequence, input files should only be upgraded when
older versions of LilyPond are no longer being maintained. Again, the original data should
be kept just in case, perhaps by using version control systems like Git to help maintain
multiple versions of your input files.

e LilyPond is quite robust when processing ‘creatively’ placed or omitted whitespace, but the
rules used by convert-1y often make some stylistic assumptions. For painless upgrades it is
therefore advised to follow the input style as used in the LilyPond manuals, particularly as
the examples in the manuals themselves are all upgraded using the convert-1y command.

2.2 Command-line preliminaries

This and the following sections only cover the command-line usage of convert-1y. GUI appli-
cations like Frescobaldi have their own interfaces to convert-1ly.

By ‘command line’, we mean the command line in the operating system. Windows users
might be more familiar with the terms ‘DOS shell’ or ‘command shell’. macOS users might be
more familiar with the terms ‘terminal’ or ‘console’.
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Describing how to use this part of an operating system is outside the scope of this manual;
please consult other documentation on this topic if you are unfamiliar with the command line.

See [The PATH environment variable], page 1, how to set up the operating system so that
convert-1ly can be used on the command line without specifying a path.

Additional setup for Windows

[Non-Windows users can skip this section; Windows users who have a Python interpreter already
installed (version 3.8 or higher) can skip this section, too.]

convert-1ly is actually a Python script called convert-1y.py. In the LilyPond binary bundle
for Windows it is located in the same directory as the lilypond.exe binary and a Python
interpreter, python.exe. Assuming that you have unpacked version 2.25.13 within a directory
C:\Users\me and PATH is correctly set up, it would be still necessary to say

python C:\Users\me\lilypond-2.25.13\bin\convert-ly.py myfile.ly
which is tedious to type.

Three steps are necessary to allow the omission of both the interpreter (python.exe) and
the .py extension.!

1. On the command line, say
assoc .py=PythonScript
to associate the extension .py with the file type ‘PythonScript’.
2. As the next command, say
ftype PythonScript=C:\Users\me\lilypond-2.25.13\bin\python.exe %1 %x*
to make files of type ‘PythonScript’ be handled by LilyPond’s python.exe. You have to
adjust the path to the actual location, and don’t omit the trailing ‘%1 %x’!
3. Modify the PATHEXT environment variable and add .py to already present entries. Do this
in exactly the same way as you have already done with PATH.

Now close the command line and open it again, then test whether convert-1y --version
works.

2.3 Invoking convert-ly

The convert-1ly command uses the \version number in the input file to detect older versions.
In most cases it is sufficient just to run
convert-ly -e myfile.ly

in the directory containing the input file; this upgrades myfile.ly in-place and preserves the
original file by renaming it to myfile.ly~. The \version number in the upgraded input file,
along with any required syntax updates, is also changed.

When run, the convert-1y command outputs the version numbers of which conversions have
been made to. If no version numbers are listed in the output for the file, it is already up to date
and using the latest LilyPond syntax.

-
Note: For each new version of LilyPond, a new convert-1ly com-
mand is created. However, not every version of LilyPond needs syntax
changes for its input files from the version before. This means that the
convert-1y command only converts input files up to the latest syntax
change it has and this, in turn, may mean that the \version number
left in the upgraded input file is sometimes lower than the version of
the convert-1y command itself.

/

1 Note that steps 1 and 2 must be done using the default command prompt, cmd . exe, and not using PowerShell!
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To convert all input files in a single directory, use

convert-ly -e *.ly

as a command. To handle all input files that reside in different subdirectories, try

find

. -name '*.ly' -exec convert-ly -e '{}' \;

to recursively search and convert them in the current directory and all directories below it. The
converted files will be located in the same directory along with their renamed originals.

On Windows, execute

forfiles /s /M *.1ly /c "cmd /c convert-ly -e @file"

instead. The forfiles command also accepts an explicit path to the top level of your folder
containing all the sub-folders that have input files in them by using the /p option.

forfiles /s /p C:\Documents\MyScores /M *.ly /c "cmd /c convert-ly -e Q@file"

If there

are spaces in the path to the top-level folder, the whole path needs to be inside

double quotes, for example

forfiles /s /p "C:\Documents\My Scores" /M *.ly /c "cmd /c convert-ly -e @file"

2.4 Command-line options for convert-1ly

The program is invoked as follows:

convert-ly [option]... filename. ..

By default,

convert-ly writes its data to standard output.

The following options can be given:

—-—version
-h, --help
-d, ——-diff
-e, ——edit

Show version number and exit.

Show usage help and exit.

-version-update

Increase the \version string only if the file has actually been changed. In that case,
the version header will correspond to the version after the last actual change. An
unstable version number will be rounded up to the next stable version number unless
that would exceed the target version number. Without this option, the version will
instead reflect the last attempted conversion.

Apply the conversions directly to the input file, modifying it in-place. If the original
file is called myfile.ly, a backup is retained under the name myfile.ly~, i.e.,
a tilde character gets appended. This backup file may be a hidden file on some
operating systems.

If you want the converted output to be stored under a different name, redirect the
standard output to a file.

convert-ly myfile.ly > mynewfile.ly

See also option --backup-numbered.

-b, ——backup-numbered

When used with the ‘~e’ option, number the backup files so that no previous version
is overwritten. Assuming the input file is called myfile.1ly, try to store the backup
in myfile.ly.~1~. If it exists, try myfile.ly.~2~ instead, etc. The backup files
may be hidden on some operating systems.
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-f, ——from=from-patchlevel
Set the version to convert from. If this is not set, convert-1y will guess it on the
basis of the (first) \version string in the file. Example: -—~from=2.10.25

-h, —-help
Print usage help.

-1 loglevel, ——loglevel=loglevel
Set the output verbosity to loglevel. Possible values, in upper case, are PROGRESS
(the default), NONE, WARNING, ERROR, and DEBUG.

-n, ——no-version
Normally, convert-1y adds a \version indicator to the output. Specifying this
option suppresses this.

-c, ——current-version
By default, convert-1y updates the \version string to the lowest necessary version.
If this option is given, the current LilyPond version (2.25.13) is used instead.

-s, ——show-rules
Show conversion descriptions and exit. The amount of information can be adjusted
with options --from and --to.

-t, ——to=to-patchlevel
Explicitly set which \version to convert to, otherwise the default is the most current
value. It must be higher than the starting version.

convert-ly --to=2.14.1 myfile.ly

-v, ——verbose
Display rule descriptions during conversion.

-w, ——warranty
Show warranty and copyright and exit.
To upgrade LilyPond fragments in Texinfo files, use
convert-ly ——from=... --to=... —--no-version *.itely
To see the changes in the LilyPond syntax between two versions, use

convert-ly --from=... --to=... -s

2.5 Problems running convert-1ly
If an input (or output) file name contains spaces it is necessary to surround the file name with
double quotes.

convert-ly "D:/My Scores/Ode.ly" > "D:/My Scores/new Ode.ly"

If the invocation of convert-1y —e *.1ly fails because the expanded command line becomes
too long, the convert-1ly command may be placed in a loop instead. This example for UNIX
upgrades all .1y files in the current directory

for £ in *.ly; do convert-ly -e $f; done
For Windows, the corresponding command is
for %x in (x.ly) do convert-ly.py -e "%x"
in the command prompt window.

As discussed earlier, not all language changes are handled. In particular, automatically
updating Scheme and LilyPond Scheme interfaces is quite unlikely; be prepared to tweak Scheme
code manually.
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2.6 Manual conversions

In theory, a program like convert-1y could handle any syntax change. After all, a computer
program interprets the old version and the new version, so another computer program can
translate one file into another.?

However, the LilyPond project has limited resources: not all conversions are performed
automatically. If convert-1y is not able to handle a syntax change, it emits a warnings like the
following (from the 2.23.12 conversion rule).

Not smart enough to convert music following \fine.

Warning: \fine no longer enforces the end of the music.

If your piece has music following \fine that you want to
exclude when it is unfolded, use \volta to exclude it.
Please refer to the manual for details, and update manually.

2.7 Writing code to support multiple versions

In some cases, especially when writing library code it is desirable to support multiple LilyPond
versions across breaking syntax changes. To do this alternative portions of code can be wrapped
into conditional expressions depending on the currently executed LilyPond version. The Scheme
function 1y:version? expects a comparison operator op and a reference version ver passed as a
list of integers with up to three elements. Missing elements are ignored so ' (2 20) is equivalent
to any version of the 2.20 line of versions. Constructs like the following are possible:

#(cond
((1y:version? > '(2 20))
(ly:message "This is code to run for LilyPond after 2.20"))
((ly:version? = '(2 19 57))
(ly:message "This will only be executed with LilyPond 2.19.57"))
(else (ly:message "This will be executed in any other version")))

Usually this will be integrated in library functions to allow alternative syntax to be used, but
it is also possible to use the comparison directly within the music like in the following example:

{
c' d'" e' f!'
#(if (ly:version? = '(2 21))
#{ \override NoteHead.color = #red #}
#{ \override NoteHead.color = #blue #J})

[}

g' a'" b'c
}
Note: This function has been introduced in LilyPond 2.21.80, so it is not possible to compare
with versions earlier than that.

2 At least, this is possible in any LilyPond file that does not contain Scheme code. Otherwise the LilyPond
file contains a Turing-complete language, and we run into problems with the famous “Halting Problem” in
computer science.



24

3 Running lilypond-book

If you want to add pictures of music to a document, you can simply do it the way you would do
with other types of pictures. The pictures are created separately (in PostScript, PDF, or PNG
format), and those are included into a ITEX or HTML document.

lilypond-book provides a way to automate this process: This program extracts snippets of
music from your document, runs 1ilypond on them, and outputs the document with pictures
substituted for the music. The line width and font size definitions for the music are adjusted to
match the layout of your document.

This is a separate program from lilypond itself, and is run on the command line; for more
information, see Section 1.2 [Command-line usage|, page 1.

This procedure may be applied to ITEX, HTML, Texinfo or DocBook documents.

3.1 An example of a musicological document

Some texts contain music examples. These texts are musicological treatises, songbooks, or
manuals like this. Such texts can be made by hand, simply by importing a PostScript or PDF
figure into the word processor. However, there is an automated procedure to reduce the amount
of work involved in HTML, ITEX, Texinfo and DocBook documents.

A script called 1ilypond-book will extract the music fragments, format them, and put back
the resulting notation. Here we show a small example for use with IXTEX. The example also
contains explanatory text, so we will not comment on it further.

Input
\documentclass [adpaper]{article}

\begin{document}

Documents for \verb+lilypond-book+ may freely mix music and text.
For example,

\begin{lilypond}
\relative {
c'2 e2 \tuplet 3/2 { f8 a b } a2 e4
+
\end{1lilypond}

Options are put in brackets.

\begin{lilypond} [fragment,quote,staffsize=26,verbatim]
c'4d £16

\end{1lilypond}

Larger examples can be put into a separate file, and introduced with
\verb+\lilypondfile+.

\lilypondfile[quote,noindent]{screech-and-boink.1ly}

(If needed, replace @file{screech-and-boink.ly} by any @file{.ly} file
you put in the same directory as this file.)

\end{document}
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Processing
Save the code above to a file called 1ilybook.1lytex, then in a terminal run

lilypond-book --output=out --pdf lilybook.lytex

lilypond-book (GNU LilyPond) 2.25.13

Reading lilybook.lytex. ..

...lots of stuff deleted...

Compiling lilybook.tex...

cd out

pdflatex lilybook

...lots of stuff deleted...

xpdf lilybook

(replace xpdf by your favorite PDF viewer)

Running 1ilypond-book and latex creates a lot of temporary files, which would clutter up

the working directory. To remedy this, use the ——output=dir option. It will create the files in
a separate subdirectory dir.

Finally the result of the I#TzX example shown above.! This finishes the tutorial section.

1 This tutorial is processed with Texinfo, so the example gives slightly different results in layout.
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Output

Documents for lilypond-book may freely mix music and text. Using Texinfo syntax, this
example

©lilypond
\relative {
c'2 e2 \tuplet 3/2 { f8 a b } a2 e4

+
Gend lilypond
produces
n 3
AX—— ! I ‘I !
@ \ W] I ‘;il » 7 ‘l
eJ <

Options to control the appearance of snippets can be added, too. Using IXTEX syntax, this
example

\begin{lilypond}[fragment, quote, staffsize=26]
c'4 £16
\end{lilypond}

produces

f)
- )
[an Y W]

'QJ} \)
[Y) L o ::)
&

Larger music snippets can be put into separate files. Using HTML syntax, this example

<lilypondfile quote noindent>
snippets/screech-and-boink.1ly

</lilypondfile>
produces
/\
A | > 2 1? o he
oz v eg
ANV D Q |

£a
Yo
Xy
=l ua
== = =

If a tagline is required, either default or custom, the entire snippet must be enclosed in a
\book { } construct.

\book {
\header { title = "A scale in LilyPond" }

\relative { ¢' de f gabc}
}
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A scale in LilyPond
0 .
'(\\ \ W ‘j 1 @ I I

LilyPond v2.25.13
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3.2 Integrating music and text

Here we explain in detail how to integrate LilyPond with various output formats.

3.2.1 BIEX

IXTEX is the de-facto standard for publishing layouts in the exact sciences. It is built on top of
the TEX typesetting engine, providing the best typography available anywhere.

See The Not So Short Introduction to BTEX (https://www.ctan.org/tex-archive/info/
lshort/english/) for an overview on how to use TEX.

lilypond-book provides the following commands and environments to include music in ETEX
files:

e the \lilypond{...} command to directly enter short LilyPond code,

e the \begin{lilypond}...\end{lilypond} environment to directly enter longer LilyPond
code,

e the \lilypondfile{...} command to insert a LilyPond file,
e the \musicxmlfile{...} command to insert a MusicXML file, which gets processed by
musicxml2ly and 1ilypond.
In the input file, music is specified with any of the following commands:

\begin{lilypond} [options,go,here]
YOUR LILYPOND CODE
\end{1ilypond}

\1lilypond[options,go,here]{ YOUR LILYPOND CODE }
\lilypondfile[options,go,herel{filename}

\musicxmlfile[options,go,here]{filename}

Additionally, \lilypondversion displays the current version of LilyPond. Running
lilypond-book yields a file that can be further processed with IXTEX.

We show some examples here. The 1ilypond environment

\begin{lilypond}[quote,fragment,staffsize=26]
c'4dd e ' g'2 g'
\end{1lilypond}

produces

0
=T

[Y) -

The short version

\lilypond[quote,fragment,staffsize=11]{<c' e' g'>}

produces

=

The default line width of the music is computed by examining the commands in the document
preamble (that is, the part of the document before \begin{document}). The 1ilypond-book
command sends these to I TEX to find out how wide the text is. The line width for music


https://www.ctan.org/tex-archive/info/lshort/english/
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fragments is then adjusted to the text width. Note that this heuristic algorithm can fail easily;
in such cases it is necessary to use the line-width music fragment option.

-
Note: Make sure that your preamble actually compiles without er-

rors, otherwise line width detection will fail. You can test this
by directly processing your document with IXTEX, using an empty
\begin{document} ... \end{document} block.

If you use a landscape paper format, be sure to add the keyword

landscape to the option list of the \documentclass macro.
- J

Each snippet calls the following macros if they have been defined by the user:
e \preLilyPondExample is called before the music,
e \postLilyPondExample is called after the music,
e \betweenLilyPondSystem[1] is called between systems if 111ypond-book splits the snippet

into several chunks. It must be defined as taking one parameter, which is the number of
files already included in this snippet. The default is to simply insert \1inebreak.

Selected Snippets

Sometimes it is useful to display music elements (such as ties and slurs) as if they continued
after the end of the fragment. This can be done by breaking the staff and suppressing inclusion
of the rest of the LilyPond output.

In ITEX, define \betweenlLilyPondSystem in such a way that inclusion of other systems is
terminated once the required number of systems are included. Since \betweenLilyPondSystem
is first called after the first system, including only the first system is trivial.

\def\betweenLilyPondSystem#1{\endinput}

\begin{lilypond} [fragment]
c'INCe'( ¢c'~ \break c' d) e f\)
\end{1lilypond}
If a greater number of systems is requested, a TEX conditional must be used before \endinput.
In this example, replace value 2 by the number of systems you want in the output.
\def\betweenLilyPondSystem#1{
\ifnum#i1<2\else\expandafter\endinput\fi
+
(Since \endinput immediately stops the processing of the current input file we need
\expandafter to delay the call of \endinput after executing \fi so that the \if ... \fi
clause is balanced.)

Remember that the definition of \betweenLilyPondSystem is effective until the current group
is finished (such as the IXTEX environment) or is overridden by another definition (which it is,
in most cases, for the rest of the document). To reset your definition, write

\let\betweenLilyPondSystem\undefined
in your IATEX source.

This may be simplified by defining a TEX macro

\def\onlyFirstNSystems#1{
\def\betweenLilyPondSystem##1{%

1 This is necessary because lilypond-book adds \usepackage{graphics} to the preamble if neither the
graphics nor the graphicx package gets loaded; this might change the paper dimensions unexpectedly for
some document classes.
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\ifnum##i<#1\else\expandafter\endinput\fi}
+

and then saying only how many systems you want before each fragment,

\onlyFirstNSystems{3}
\begin{lilypond}...\end{1lilypond}
\onlyFirstNSystems{1}
\begin{lilypond}...\end{1lilypond}

See also

There are specific 1ilypond-book command-line options and other details to know when pro-
cessing XTEX documents, see Section 3.4 [Invoking 1ilypond-book]|, page 36.

3.2.2 Texinfo

Texinfo is the standard format for documentation of the GNU project. An example of a Texinfo
document is this manual. The HT'ML, PDF, and Info versions of the manual are made from the
Texinfo document.

1lilypond-book provides the following commands and environments to include music in Tex-
info files:

e the @lilypond{...} command to directly enter short LilyPond code,
e the @lilypond...Qend lilypond environment to directly enter longer LilyPond code,
e the @lilypondfile{...} command to insert a LilyPond file,
e the @musicxmlfile{...} command to insert a MusicXML file, which gets processed by
musicxml2ly and 1lilypond.
In the input file, music is specified with any of the following commands

@lilypond[options,go,here]
YOUR LILYPOND CODE
Q@end lilypond

@lilypond[options,go,here]{ YOUR LILYPOND CODE }
@lilypondfile[options,go,here]{filename}

Omusicxmlfile[options,go,herel{filename}
Additionally, @1ilypondversion displays the current version of LilyPond.

All of the above commands must start a line (possibly preceded by whitespace), even if
used with the inline fragment option. There must be also no text after the closing brace (for
@lilypond{...}) or @end lilypond.

When 1lilypond-book is run on it, this results in a Texinfo file (with extension .texi)
containing @image tags for HTML, Info and printed output. lilypond-book generates images
of the music in EPS and PDF formats for use in the printed output, and in PNG format for use
in HTML and Info output.

We show some examples here. The 1ilypond environment

@lilypond[quote,fragment]
c'4d e ' g'2 g'
Q@end lilypond

produces
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N>

' K)
'\ \ W
o e

The short version

D

QL
\

@lilypond[quote,fragment,staffsize=11]{<c' e' g'>}

produces

b=

See also

There are specific 1ilypond-book command-line options and other details to know when pro-
cessing Texinfo documents, see Section 3.4 [Invoking 1ilypond-book], page 36.

3.2.3 HTML
1lilypond-book provides the following commands and environments to include music in HTML
files:

e the <lilypond ... /> command to directly enter short LilyPond code,

e the <lilyond>...</lilypond> environment to directly enter longer LilyPond code,

e the <lilypondfile>...</lilypondfile> command to insert a LilyPond file,

e the <musicxmlfile>...</musicxmlfile> command to insert a MusicXML file, which gets

processed by musicxml2ly and lilypond.
In the input file, music is specified with any of the following commands:

<lilypond options go here>
YOUR LILYPOND CODE
</lilypond>

<lilypond options go here: YOUR LILYPOND CODE />
<lilypondfile options go here>filename</lilypondfile>

<musicxmlfile options go here>filename</musicxmlfile>
Additionally, <lilypondversion/> displays the current version of LilyPond.
We show some examples here. The 1ilypond environment

<lilypond quote fragment staffsize=26>
CI4: dl el fl g|2 gl
</lilypond>

produces

0

* I @)
[ fan Y W] =) =
NV

[Y) -

The short version

<lilypond quote fragment staffsize=11: <c' e' g'> />

produces

b=
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See also

There are specific 1ilypond-book command-line options and other details to know when pro-
cessing HTML documents, see Section 3.4 [Invoking 1ilypond-book], page 36.

3.2.4 DocBook

For inserting LilyPond snippets it is good to keep the conformity of DocBook documents, allow-
ing the use of DocBook editors, validation, etc. For this reason no custom tags are provided,
only specifying conventions based on standard DocBook elements.

Common conventions

For inserting all types of snippets we use the mediaobject and inlinemediaobject elements
to format snippets inline or not inline, respectively. The snippet formatting options are always
provided in the role property of the innermost element (see next sections). Tags are chosen to
allow DocBook editors format the content gracefully. The DocBook files to be processed with
lilypond-book should have the extension .lyxml.

Including a LilyPond file

This is the simplest case. We must use the .1y extension for the included file and insert it as a
standard imageobject, with the following structure:

<mediaobject>

<imageobject>

<imagedata fileref="musicl.ly"
role="printfilename" />

</imageobject>

</mediaobject>
Note that you can use mediaobject or inlinemediaobject as the outermost element as you
wish.

Including LilyPond code

Including LilyPond code is possible by using a programlisting environment where the language
is set to 1ilypond, with the following structure:

<inlinemediaobject>
<textobject>
<programlisting language="lilypond"
role="fragment verbatim staffsize=16
ragged-right relative=2">
\context Staff \with {
\remove Time_signature_engraver
\remove Clef_engraver}
{ c4( fis) }
</programlisting>
</textobject>
</inlinemediaobject>

As you can see, the outermost element is a mediaobject or inlinemediaobject, and there
is a textobject containing the programlisting inside.

Processing the DocBook document

Running lilypond-book on a .lyxml file creates a valid DocBook document (with extension
.xml) to be further processed. If you use dblatex (http://dblatex.sourceforge.net), it cre-
ates a PDF file from this document automatically. For HTML (HTML Help, JavaHelp, etc.)
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generation you can use the official DocBook XSL stylesheets; however, it is possible that you
have to make some customization for it.

3.3 Music fragment options

In the following, a ‘1ilypond-book command’ refers to any command described in the previ-
ous sections that is handled by lilypond-book to produce a music snippet. For simplicity,
lilypond-book commands are only shown in Texinfo syntax (i.e., starting with ‘@’) to make
them better distinguishable from LilyPond commands.

Note that the option string is parsed from left to right; if an option occurs multiple times,
the last one is taken.

The following options are available for 1ilypond-book commands:

staffsize=ht
Set staff size to ht, which is measured in points.

ragged-right
Produce ragged-right lines with natural spacing, i.e., ragged-right = ##t is added
to the LilyPond snippet. Single-line snippets will always be typeset by default as
ragged-right, unless noragged-right is explicitly given.

noragged-right
For single-line snippets, allow the staff length to be stretched to equal that of the
line width, i.e., ragged-right = ##f is added to the LilyPond snippet.

line-width

line-width=size\unit
Set line width to size (expressed in unit). unit is one of the following: cm, mm, in,
pt, or bp. This option affects LilyPond output (that is, the staff length of the music
fragment), not the text layout.

If used without an argument, or if no line-width option is given, 1ilypond-book
tries to guess a default for 1ilypond environments that don’t use the ragged-right
option.

See also option papersize.

papersize=string
Set paper size to string (for example a5 or letter) for music fragments that use
\book. See Section “Predefined paper sizes” in Notation Reference for a list of
available paper sizes.

This option affects LilyPond output (that is, the paper size of the music fragment),
not the text layout. Unknown values of string are ignored: a warning is emitted
and the snippet is printed using the document’s paper size for IIEX and Texinfo,
and the A4 paper format for HI'ML and DocBook.

If option papersize is given without option line-width (more specifically, op-
tion line-width without an argument), LilyPond uses its own idea of the de-
fault line width within the snippet, also ignoring option quote (which still makes
lilypond-book emit a quotation block, though).

paper-width=size\unit
Set paper width to size (expressed in unit) for music fragments that use \book. unit
is one of the following: cm, mm, in, pt, or bp.
This option affects LilyPond output (that is, the paper width of the music frag-
ment), not the text layout. If set, it overrides option papersize if given. If option
paper-height is not specified, the paper height is set to the document’s paper
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height for IXTEX and Texinfo, and the A4 paper height (296 mm) for HTML and
DocBook.

paper-height=size\unit

notime

fragment

nofragment

inline

Set paper height to size (expressed in unit) for music fragments that use \book.
unit is one of the following: cm, mm, in, pt, or bp.

This option affects LilyPond output (that is, the paper height of the music frag-
ment), not the text layout. If set, it overrides option papersize if given. If option
paper-width is not specified, the paper width is set to the document’s paper width
for IATEX and Texinfo, and the A4 paper width (210 mm) for HTML and DocBook.

Example:

\lilypond[paper-width=10\cm, paper-height=57\mm]{
\book {

}
}

Do not print the time signature and turn off the timing (time signature, bar lines)
in the score.

Make 1ilypond-book add some boilerplate code so that you can simply enter, say,
c'd

without \layout, \score, etc.

Do not add additional code to complete LilyPond code in music snippets. Since this
is the default, nofragment is redundant normally.

inline=vshift

Set up snippet for inline use, that is, to be typeset within a paragraph. The snippet
itself is formatted with a very small left padding (approximately the same as the right
padding), ignoring the value given by the command-line option --left-padding.

For the XTREX backend, the inline image gets shifted vertically; vshift is a factor of
the current image’s height. If no argument is given a default value of -0.3 is used,
thus moving the image down by approx. one third of its height. The default value
can be adjusted with command-line option --inline-vshift.

For Texinfo output, it suppresses the insertion of a blank line before and after the
snippet. For HTML output, it suppresses the insertion of <p> before and </p> after
the snippet.

To actually make a snippet appear inline in IATEX and Texinfo mode, it is necessary
to position it within a paragraph, avoiding an empty line before and after the snippet.
For example, this XTEX code

The motive
\lilypond[inline,staffsize=11]{

{ \time 2/4 r8 g'[ g' g'] | es'2 }
+

is widely known.

becomes

The motive @ is widely known.
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indent=size\unit

Set indentation of the first music system to size (expressed in unit). unit is one
of the following: cm, mm, in, pt, or bp. This option affects LilyPond, not the text
layout.

noindent Set indentation of the first music system to zero. This option affects LilyPond, not
the text layout. Since no indentation is the default, noindent is redundant normally.
quote Reduce line length of a music snippet by 2%0.4 in and put the output into a quotation
block. The value ‘0.4in’ can be controlled with the exampleindent option.
See also option papersize.
exampleindent
Set the amount by which the quote option indents a music snippet.
relative

relative=n

Use relative octave mode. By default, notes are specified relative to middle C.
The optional integer argument specifies the octave of the starting note, where the
default 1 is middle C. relative option only works when fragment option is set, so
fragment is automatically implied by relative, regardless of the presence of any
(no) fragment option in the source.

LilyPond also uses 1ilypond-book to produce its own documentation. To do that, some
more obscure music fragment options are available.

verbatim

texidoc

The argument of a 1ilypond-book command is copied to the output file and enclosed
in a verbatim block, followed by any text given with the intertext option (not
implemented yet); then the actual music is displayed. This option does not work
well with @1ilypond{} if it is part of a paragraph.

If verbatim is used in a 1ilypondfile command, it is possible to enclose verbatim
only a part of the source file. If the source file contain a comment containing ‘begin
verbatim’ (without quotes), quoting the source in the verbatim block will start
after the last occurrence of such a comment; similarly, quoting the source verbatim
will stop just before the first occurrence of a comment containing ‘end verbatim’,
if there is any. In the following source file example, the music will be interpreted in
relative mode, but the verbatim quote will not show the relative block, i.e.,

\relative { % begin verbatim
c'4 e2 gb
f2 e % end verbatim

b
will be printed with a verbatim block like

c4 e2 g4
f2 e

If you would like to translate comments and variable names in verbatim output but
not in the sources, you may set the environment variable LYDOC_LOCALEDIR to a
directory path; the directory should contain a tree of .mo message catalogs with
lilypond-doc as a domain.

(Only for Texinfo output, and only for @lilypondfile.) If lilypond is called
with the ——header=texidoc option, and the file to be processed is called foo.1ly, it
creates a file foo.texidoc if there is a texidoc field in the \header block of foo.1y.
lilypond-book’s texidoc option makes it include such a file, adding its contents
as a documentation block right before the music snippet (but outside the example
environment generated by a quote option).
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Assuming the file foo.1ly contains
\header {
texidoc = "This file demonstrates a single note."
+
{c4}
and we have this in our Texinfo document test.texinfo
@lilypondfile[texidoc]{foo.ly}
the following command line gives the expected result

lilypond-book --pdf \
——process="lilypond --header=texidoc" \
test.texinfo

All LilyPond documentation snippets (in the Documentation/snippets directory of
the distribution) are .1y files that have such texidoc fields in their \header blocks.

For localization purposes, if the Texinfo document contains @documentlanguage
XX and foo.ly’s \header block contains a texidocXX field, and if 1ilypond is
called with --header=texidocXX, then foo.texidocXX gets included instead of
foo.texidoc, if present. XX is usually a two-letter string like ‘de’ (for German) or
‘ca’ (for Catalan).

doctitle (Only for Texinfo output, and only for @1ilypondfile.) This option works similarly
to the texidoc option: if 1ilypond is called with the —-header=doctitle option,
and the file to be processed is called foo.ly and contains a doctitle field in the
\header block, it creates a file foo.doctitle. When the doctitle option is used,
the contents of foo.doctitle, which should be a single line of text, is inserted
in the Texinfo document as @lydoctitle text. @lydoctitle should be a macro
defined in the Texinfo document. The same remark about texidoc processing with
localized documentation also applies to doctitle.

nogettext
(Only for Texinfo output.) Do not translate comments and variable names in the
snippet quoted verbatim.

printfilename
If a LilyPond input file is included with 1ilypondfile command, print the file name
right before the music snippet. For HITML output, this is a link. Only the base
name of the file is printed, i.e., the directory part of the file path is stripped.

3.4 Invoking lilypond-book

lilypond-book produces a file with one of the following extensions: .tex, .texi, .html or .xml,
depending on the output format. All of .tex, .texi and .xml files need further processing.

Format-specific instructions

BTEX

There are two ways of processing your ITEX document for printing or publishing: getting a
PDF file directly with pdfETEX (XeKTEX, lualdTEX) or getting a PostScript file with BTEX
via a DVI-to-PostScript translator like dvips. The first way is simpler and recommended?, and
whichever way you use, you can easily convert between PostScript and PDF with tools, like
ps2pdf and pdf2ps included in Ghostscript package.

2 Note that pdfIATEX and IATEX may not be both usable to compile any IATEX document, that is why we
explain the two ways.
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To produce a PDF file with pdfIATEX, use:

lilypond-book --pdf yourfile.lytex
pdflatex yourfile.tex

To produce PDF output via WTEX/dvips/ps2pdf:

lilypond-book yourfile.lytex
latex yourfile.tex

dvips -Ppdf yourfile.dvi
ps2pdf yourfile.ps

The .dvi file created by this process will not contain note heads. This is normal; if you follow
the instructions, they will be included in the .ps and .pdf files.

Running dvips may produce some warnings about fonts; these are harmless and may be
ignored. If you are running latex in twocolumn mode, remember to add -t landscape to the
dvips options.

Environments such as
\begin{lilypond} ... \end{lilypond}

are not interpreted by ITEX. Instead, 1ilypond-book extracts those ‘environments’ into files of
its own and runs LilyPond on them. It then takes the resulting graphics and creates a .tex file
where the \begin{lilypond}...\end{lilypond} macros are replaced by ‘graphics inclusion’
commands. It is at this time that ITEX is run (although ITEX will have run previously, it will
have been, effectively, on an ‘empty’ document in order to calculate paper dimensions and the
line width for LilyPond snippets).

Known issues and warnings

The \pageBreak command will not work within a \begin{lilypond} ... \end{lilypond}
environment.

Many \paper block variables will also not work within a \begin{lilypond} ...
\end{lilypond} environment. Use \newcommand with \betweenLilyPondSystem in the
preamble.

\newcommand{\betweenLilyPondSystem} [1] {\vspace{36mm}\1inebreak}

Texinfo

To produce a Texinfo document (in any output format), follow the normal procedures for Texinfo;
that is, either call texi2pdf or texi2dvi or texiZany, depending on the output format you
want to create. By default, texi2pdf uses pdftex for processing, which you can verify in the
console output. In this case, run 1ilypond-book with the ——pdf option so that it creates .pdf
snippets instead of .eps files. pdftex is unable to include the latter ones and will output an
error message otherwise.

See the documentation of Texinfo for further details.

Command-line options

1lilypond-book accepts the following command-line options.

-f format

-—format=format
Specify the document type to process: html, latex, texi (the default), texi-html,
or docbook. If this option is missing, 1ilypond-book tries to detect the format
automatically, see Section 3.5 [Filename extensions|, page 40. Currently, texi-html
is the same as texi.
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-F filter

--filter=filter
Pipe snippets through filter. With this option, 1ilypond-book does not create
snippet files; instead, it modifies the code of the embedded snippets in the input
document and emits the resulting file, which in turn can then be processed by
another run with 1ilypond-book (without the —-filter option). Example:

lilypond-book --filter='convert-ly --from=2.0.0 -' my-book.tely

lilypond-book does not accept options ——filter and —-process at the same time.

-h
--help Print a short help message.

-Idir

-—include=dir
Add dir to the include path. Since 1ilypond-book also looks for already compiled
snippets in the include path and does not write them back to the output directory, it
is necessary in some cases to invoke further processing commands such as texi2any
or latex with the same -I dir options.

-1 loglevel

--loglevel=loglevel
Set the output verbosity to loglevel. Possible values are NONE, ERROR, WARNING,
PROGRESS (default), and DEBUG. If this option is not used and the environment
variable LILYPOND BOOK_LOGLEVEL is set, its value is used as the log level.

-o dir

--output=dir
Place generated files into directory dir. Running 1ilypond-book generates lots of
small files that LilyPond will process. To avoid all that clutter in the source directory,
use the ——output command-line option, and change to that directory before running
latex or texiZ2any.

lilypond-book --output=out yourfile.lytex
cd out

--skip-lily-check
Do not fail if no LilyPond output is found. It is used for generating LilyPond’s Info
documentation without images.

--skip-png-check
Do not fail if no PNG images are found for EPS files. It is used for generating
LilyPond’s Info documentation without images.

--lily-output-dir=dir
Write 1ily-XXX files to directory dir and link into --output directory. Use this
option to save building time for documents in different directories that share a lot
of identical snippets.

—--lily-loglevel=loglevel
Set the output verbosity of the invoked 1ilypond command to loglevel. Possible
values are NONE, ERROR, WARNING, BASIC, PROGRESS, INFQ (default), and DEBUG. If
this option is not used and the environment variable LILYPOND LOGLEVEL is set, its
value is used as the log level.

-—-info-images-dir=dir
Format Texinfo output so that Info will look for images of music in directory dir.
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--inline-vshift=vshift
In the IATEX backend, use vshift to vertically move all inline images. vshift is a
factor of an image’s height; the default value is -0.3, thus moving the images down
by approx. one third of their individual heights. The factor can be locally overridden
with an argument to the inline snippet option.

--latex-program=prog
Run executable prog instead of latex. This is useful if your document is processed
with xelatex, for example.

--left-padding=amount
Pad LilyPond snippets on the left with whitespace.

amount is given in millimeters relative to the start of the staff. The default value is
3.0 mm.

The widths of tightly clipped systems can vary due to notation elements such as
bar numbers or instrument names that are positioned left of the beginning of staves.
The padding sets the minimum distance between the left margin of the snippet
images and the beginning of (non-indented) staves; this allows the expected vertical
alignment of snippets in the master document.

In addition to padding at the left, this option shortens each staff line by amount.
As a consequence, each line is moved to the right visually.

Note that amount, as used for padding, is rounded up to be an integer multiple of
the big point (bp) unit for PostScript and PDF output (one bp is 1/72th of an inch,
approx. 0.353 mm). However, this is not done on the LilyPond side for shortening
the staff line. This might lead to a tiny but probably surprising staff length change
instead of changing the padding if amount is not an integer multiple of the bp unit.

-P command

--process=command
Process LilyPond snippets using command. The default command is 1ilypond.
1lilypond-book does not accept options ——filter and —-process at the same time.

--pdf Create PDF snippet files. If not set, only PNG and EPS files are produced. Use
this option if you want to directly embed PDF files into IXTEX or Texinfo files.

--redirect-lilypond-output
By default, logging output is displayed on the terminal. This option redirects all
output to log files in the same directory as the source files.

--use-source—-file-names
Write snippet output files with the same base name as their source file. This op-
tion works only for snippets included with the 1ilypondfile command and only if
directories implied by ——output-dir and --1ily-output-dir options are different.
-V
--verbose
Be verbose. This is equivalent to —-loglevel=DEBUG.
-V
—--version
Print version information.

Known issues and warnings

The Texinfo command @pagesizes is not interpreted. Similarly, X TEX commands that change
margins and line widths after the preamble are ignored.

Only the first \score of a LilyPond block is processed.
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3.5 Filename extensions

You can use any file name extension for the input file, but if you do not use the recommended
extension for a particular format you may need to manually specify the output format; for details,
see Section 3.4 [Invoking 1ilypond-book]|, page 36. Otherwise, 1ilypond-book automatically
selects the output format based on the input file name’s extension.

extension output format

chtml HTML
.htmly HTML
.itely Texinfo

.latex TEX

.lytex TEX
.lyxml DocBook

.tely Texinfo
.tex IEX

.texi Texinfo
.texinfo  Texinfo
.xml HTML

If you use the same file name extension for the input file than the extension 1ilypond-book
uses for the output file, and if the input file is in the same directory as 1ilypond-book working
directory, you must use ——output option to make 1ilypond-book running, otherwise it will exit
with an error message like “Output would overwrite input file”.

3.6 Parallel execution

The lilypond-book script cannot be used to process documents in parallel if the output di-
rectory is the same. If you try to do so, sequential execution (in arbitrary order) of the
lilypond-book processes is enforced instead by using a lock file.

In other words, to process documents foo.lytex and bar.lytex at the same time (via the
make utility, for example), put them either into two different directories, say, foo/foo.lytex
and bar/bar.lytex, or use command-line option ——output with different values.

Note that LilyPond itself can process multiple input files in parallel, actually. Since
lilypond-book passes a list of all snippets in a document to 1ilypond in one rush, parallel
execution is possible by using its -djob-count option.

lilypond-book --process="lilypond -djob-count=4" \
—-—output=foo \
oo\
foo.lytex

3.7 lilypond-book templates

These templates are for use with lilypond-book. If you’re not familiar with this program,
please refer to Chapter 3 [Running 1ilypond-book], page 24.

HTEX
You can include LilyPond fragments in a INTEX document.

\documentclass{article}

% here you can insert packages all LaTeX flavours understand
\usepackage [ngerman,finnish,english]{babel}
\usepackage{graphicx}

\usepackage{libertinus}
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\usepackage{iftex}
\ifxetex
% stuff specific to XeTeX
\usepackage{xltxtra}
\else
% this can be empty if you are not going to use pdfTeX
\usepackage [T1]{fontenc}
\fi

\begin{document}

\title{A short document with LilyPond and \LaTeX}
\maketitle

Normal \textbf{font} commands inside the \emph{textl} work,
because they are \textsf{supported by all \LaTeX{} flavours}.
If you want to use specific commands like \verb+\XeTeX+, you
should include them again in a \verb+\ifxetex+ block.

You can use this to print the \ifxetex \XeTeX{} \else XeTeX \fi
command, which is not known to pdfTeX by default.

In normal text you can easily use LilyPond commands, like this:

\smallskip
\begin[staffsize=12]{1lilypond}
{ a2""foo" b_"bar" c¢'8 ¢c' c¢' c' }

\paper {
property-defaults.fonts.serif = "Libertinus Serif"

}
\end{1lilypond}
\smallskip

\noindent
Note that the fonts used in snippets have to be set from inside
the snippets, as demonstrated.

\selectlanguage{ngerman}

Da die Standard-Eingabekodierung von \LaTeX{} UTF-8 ist,
funktionieren Umlaute u.\,i. ohne \LaTeX-Akzentbefehle (Baoéu),
wenn sie von der Schriftart unterstiitzt werden.

\end{document}

Texinfo

You can include LilyPond fragments in Texinfo; in fact, this entire manual is written in Texinfo.
\input texinfo

Q@ifnottex
Onode Top
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Otop
Q@end ifnottex

Texinfo text

@lilypond
\relative {
ad b cd

+
Q@end lilypond

More Texinfo text, and options in brackets.

@lilypond[verbatim,fragment,ragged-right]
d4 c b a
@end lilypond

Obye

HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<body>

<p>
Documents for lilypond-book may freely mix music and text. For
example,
<lilypond>
\relative {
a'd4bcd
¥
</lilypond>
</p>

<p>
Another bit of lilypond, this time with optioms:

<lilypond fragment quote staffsize=26 verbatim>
ad b cd

</lilypond>

</p>

</body>
</html>

3.8 Sharing the table of contents

These functions already exist in the OrchestralLily package:
https://repo.or.cz/w/orchestrallily.git

For greater flexibility in text handling, some users prefer to export the table of contents from
lilypond and read it into KTEX.
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Exporting the ToC from LilyPond

This assumes that your score has multiple movements in the same lilypond output file.

#(define (oly:create-toc-file layout pages)
(let* ((label-table (ly:output-def-lookup layout 'label-page-table)))
(if (not (null? label-table))
(let* ((format-line (lambda (toc-item)
(let* ((label (car toc-item))
(text (caddr toc-item))
(label-page (and (list? label-table)
(assoc label label-table)))
(page (and label-page (cdr label-page))))

(format #f "~a, section, 1, {~a}, ~a" page text label))))
(formatted-toc-items (map format-line (toc-items)))
(whole-string (string-join formatted-toc-items ",\n"))
(output-name (ly:parser-output-name))

(outfilename (format #f "~a.toc" output-name))
(outfile (open-output-file outfilename)))
(if (output-port? outfile)
(display whole-string outfile)
(ly:warning (G_ "Unable to open output file ~a for the TOC information") outfilename))
(close-output-port outfile)))))

\paper {
#(define (page-post-process layout pages) (oly:create-toc-file layout pages))
}

Importing the ToC into BTEX

In IMTEX, the header should include:

\usepackage{pdfpages}
\includescore{nameofthescore}

where \includescore is defined as:
Too oo ToTo oo foTo ToTo foTo oo oo oo oo o oo ToTo fodo oo foTo fots o o oo o o o o o oo foTo foTo foTo foTo o o oo ot o To o o o foro foTo foTo foo o
% \includescore{PossibleExtension}

Tolololotolo o oo oo o oo o oot oo oot oo oTo oo oo ToTo o oto o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o fo o o fo

Read in the TOC entries for a PDF file from the corresponding .toc file.
This requires some heave latex tweaking, since reading in things from a file
and inserting it into the arguments of a macro is not (easily) possible

RIS

% Solution by Patrick Fimml on #latex on April 18, 2009:
% \readfile{filename}{\variable}

% reads in the contents of the file into \variable (undefined if file
% doesn't exist)

\newread\readfile@f

\def\readfile@line#1{%

{\catcode \""M=10\global\read\readfile@f to \readfile@tmp}’
\edef\do{\noexpand\gaddto@macro{\noexpand#1}{\readfile@tmp}}\do%
\ifeof\readfile@f\else},

\readfile@line{#1}%

\fi%

+

\def\readfile#1#2{%

\openin\readfile@f=#1 %

\ifeof\readfile®@f

\typeout{No TOC file #1 available!}

\else’,

\gdef#2{}V,

\readfile@line{#23}%

\fi

\closein\readfile®@f?,

Y
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\newcommand{\includescore}[1]{
\def\oly@fname{\oly@basename\Q@ifmtarg{#1}{} {_#1}}
\let\oly@addtotoc\undefined
\readfile{\olyO@xxxxxxxxx}{\oly@addtotoc}
\ifx\oly@addtotoc\undefined

\includepdf [pages=-]{\oly@fname}

\else

\edef\includeit{\noexpand\includepdf [pages=-,addtotoc={\oly@addtotoc}]
{\oly@fname}}\includeit

\fi

¥

3.9 Alternative methods of mixing text and music

Other means of mixing text and music (without 1ilypond-book) are discussed in Section 4.4
[LilyPond output in other programs]|, page 52.
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4 External programs
LilyPond can interact with other programs in various ways.

4.1 Point and click

Point and click lets you find notes in the input by clicking on them in the PDF viewer. This
makes it easier to find input that causes some error in the sheet music.

4.1.1 Configuring the system

When this functionality is active, LilyPond adds hyperlinks to PDF and SVG files. These
hyperlinks are sent to a ‘URI helper’ or a web-browser, which opens a text-editor with the
cursor in the right place.

To make this chain work, you should configure your PDF viewer to follow hyperlinks using
the 1ilypond-invoke-editor script supplied with LilyPond.

The program 1lilypond-invoke-editor is a small helper program. It will invoke an editor
for the special textedit URIs, and run a web browser for others. It looks up the environment
variables EDITOR and LYEDITOR to find out and launch the favorite editor to use. LYEDITOR will
have priority over EDITOR, so we recommend using the former especially if you want to use one
editor in the terminal and another editor for LilyPond point and click.

Every editor may have a different syntax to open a file in a specific line and column.
For user’s convenience, LilyPond comes with ready commands for several editors, listed in
scripts/lilypond-invoke-editor.py. This means that you can simply write the editor binary
name, e.g.:

export LYEDITOR=atom
and this will invoke
atom %(file)s:%(1line)s:%(column)s

where %(file)s, %(line)s and %(column)s are replaced with the file, line and column
respectively.

In order to use an editor not listed in the script, you should find its specific syntax and assign
the full command to LYEDITOR. Here’s an example for Visual Studio Code editor:

export LYEDITOR="code --goto %(file)s:%(line)s:%(column)s"

Note: If you choose Emacs, an extra configuration is needed. You
should add the line (server-start) to your ~/.emacs file, otherwise
every click on an object in the PDF will open a new Emacs window.

Using GNOME

In GNOME, URIs are handled via ‘.desktop’ files. Create a file in a local directory such as /tmp
that is called 1ilypond-invoke-editor.desktop and has the contents;

[Desktop Entry]

Version=1.0
Name=1ilypond-invoke-editor
GenericName=Textedit URI handler
Comment=URI handler for textedit:
Exec=1lilypond-invoke-editor %u
Terminal=false

Type=Application
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MimeType=x-scheme-handler/textedit;
Categories=Editor
NoDisplay=true

and then execute the commands

xdg-desktop-menu install ./lilypond-invoke-editor.desktop
xdg-mime default lilypond-invoke-editor.desktop x-scheme-handler/textedit

After that invocation;
xdg-open textedit:///etc/issue:1:0:0

should call 1ilypond-invoke-editor for opening files.

Extra configuration for Evince

If xdg-open works, but Evince still refuses to open point and click links due to denied permissions,
you might need to change the Apparmor profile of Evince which controls the kind of actions
Evince is allowed to perform.

For Ubuntu, the process is to edit the file /etc/apparmor.d/local/usr.bin.evince and
append the following lines:

# For Textedit links

/usr/local/bin/lilypond-invoke-editor Cx -> sanitized_helper,
After adding these lines, call

sudo apparmor_parser -r -T -W /etc/apparmor.d/usr.bin.evince

Now Evince should be able to open point and click links. It is likely that similar configurations
will work for other viewers.

Enabling point and click

Point and click functionality is enabled by default when creating PDF or SVG files.

The point and click links enlarge the output files significantly. For reducing the size of these
(and PS) files, point and click may be switched off by issuing

\pointAndClickOff
in a .1y file. Point and click may be explicitly enabled with
\pointAndClickOn
Alternately, you may disable point and click with a command-line option:

lilypond -dno-point-and-click file.ly

Note: You should always turn off point and click in any LilyPond
files to be distributed to avoid including path information about your
computer in the PDF file, which can pose a security risk.

Selective point-and-click

For some interactive applications, it may be desirable to only include certain point-and-click
items. For example, if somebody wanted to create an application which played audio or video
starting from a particular note, it would be awkward if clicking on the note produced the point-
and-click location for an accidental or slur which occurred over that note.
This may be controlled by indicating which events to include:
e Hard-coded in the .1y file:

\pointAndClickTypes #'note-event
\relative {
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c'2\f( £)
+
or
#(ly:set-option 'point-and-click 'note-event)
\relative {
c'2\f( f)
+

e Command line:

lilypond -dpoint-and-click=note-event example.ly

Multiple events can be included:
e Hard-coded in the .1y file:
\pointAndClickTypes #'(note-event dynamic-event)
\relative {
c'2\f( )
}

or
#(ly:set-option 'point-and-click '(note-event dynamic-event))
\relative {
c'2\f( 1)
}

e Command line:

lilypond \
-dpoint-and-click="(note-event dynamic-event)" \
example.ly

4.2 Text editor support
There is support for different text editors for LilyPond.

Emacs mode

Emacs has a 1ilypond-mode, which provides keyword autocompletion, indentation, LilyPond
specific parenthesis matching and syntax coloring, handy compile short-cuts and reading Lily-
Pond manuals using Info. If 1ilypond-mode is not installed on your platform, see below.

An Emacs mode for entering music and running LilyPond is contained in the source archive
in the elisp directory. Do make install to install it to elispdir. The file 1ilypond-init.el
should be placed to load-path/site-start.d/ or appended to your ~/.emacs or ~/.emacs.el

As a user, you may want add your source path (e.g. ~/site-lisp/) to your load-path by
appending the following line (as modified) to your ~/.emacs

(setq load-path (append (list (expand-file-name "~/site-1lisp")) load-path))

Vim mode

For Vim (https://www.vim.org), a filetype plugin, indent mode, and syntax-highlighting mode
are available to use with LilyPond. To enable all of these features, create (or modify) your
$HOME/ . vimrc to contain these three lines, in order:

filetype off

set runtimepath+=/usr/local/share/lilypond/current/vim/
filetype on

syntax on
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If LilyPond is not installed in the /usr/local/ directory, change the path appropriately. This
topic is discussed in Section “Other sources of information” in Learning Manual.

Other editors

Other editors (both text and graphical) support LilyPond, but their special configuration files
are not distributed with LilyPond. Consult their documentation for more information. Such
editors are listed in Section “Easier editing” in General Information.

4.3 Converting from other formats

Music can be entered also by importing it from other formats. This chapter documents the tools
included in the distribution to do so. There are other tools that produce LilyPond input, for
example GUI sequencers and XML converters. Refer to the website (https://lilypond.org)
for more details.

These are separate programs from 1ilypond itself, and are run on the command line; see
Section 1.2 [Command-line usage|, page 1, for more information.

Known issues and warnings

We unfortunately do not have the resources to maintain these programs; please consider them
“as-is”. Patches are appreciated, but bug reports will almost certainly not be resolved.

4.3.1 Invoking midi2ly
midi2ly translates a Type 1 MIDI file to a LilyPond source file.

MIDI (Music Instrument Digital Interface) is a standard for digital instruments: it specifies
cabling, a serial protocol and a file format. The MIDI file format is a de facto standard format
for exporting music from other programs, so this capability may come in useful when importing
files from a program that has a converter for a direct format.

midi2ly converts tracks into Section “Staff” in Internals Reference and channels into Section
“Voice” in Internals Reference contexts. Relative mode is used for pitches, durations are only
written when necessary.

It is possible to record a MIDI file using a digital keyboard, and then convert it to .ly.
However, human players are not rhythmically exact enough to make a MIDI to LY conversion
trivial. When invoked with quantizing (-s and -d options) midi21y tries to compensate for these
timing errors, but is not very good at this. It is therefore not recommended to use midi21ly for
human-generated midi files.

It is invoked from the command line as follows,

midi2ly [option]... midi-file

Note that by ‘command line’, we mean the command line of the operating system. See

Section 4.3 [Converting from other formats], page 48, for more information about this.

The following options are supported by midi21ly.

-a, ——absolute-pitches
Print absolute pitches.

—-d, ——duration-quant=DUR

Quantize note durations on DUR.
-e, ——explicit-durations

Print explicit durations.
-h, --help

Show summary of usage.
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-k, ——key=acc[:minor]
Set default key. acc > 0 sets number of sharps; acc < 0 sets number of flats. A
minor key is indicated by :1.

-0, ——output=file
Write output to file.

-s, ——start-quant=DUR
Quantize note starts on DUR.

-t, ——allow-tuplet=DUR*NUM/DEN
Allow tuplet durations DUR*NUM /DEN.

-v, ——verbose
Be verbose.
-V, ——version

Print version number.

-w, ——warranty

Show warranty and copyright.
-x, ——text-lyrics

Treat every text as a lyric.

Known issues and warnings

Overlapping notes in an arpeggio will not be correctly rendered. The first note will be read and
the others will be ignored. Set them all to a single duration and add phrase markings or pedal
indicators.

4.3.2 Invoking musicxml2ly
MusicXML (http://www.musicxml.org/) is an XML dialect for representing music notation.

musicxml2ly extracts notes, articulations, score structure and lyrics from ‘part-wise’ Mu-
sicXML files then writes them to a .1y file. It is run from the command line as follows;

musicxml2ly [option]... file.xml

Note that by ‘command line’, we mean the command line of the operating system. See
Section 4.3 [Converting from other formats], page 48, for more information about this.

If - is used instead of file.xml, musicxm121y reads all input directly from the command line.
The following options are supported by musicxml21ly:

-a, ——absolute
convert pitches in absolute mode.

--fb —-fretboards
converts <frame> events to a separate FretBoard voice instead of markups.

-h, —-help
print usage and a summary of all the available command-line options.
-1, —-language=LANG
use LANG for pitch names, e.g. deutsch for note names in German.
--loglevel=LOGLEVEL
Sets the output verbosity to LOGLEVEL. Possible values are NONE, ERROR, WARNING,
PROGRESS (default) and DEBUG.
-m, —-midi
activate the midi block in the .ly file.
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--nb, -—no-beaming
do not convert beaming information, use LilyPond’s automatic beaming instead.

--nd, ——no-articulation—-directions
do not convert directions (7, _ or -) for articulations, dynamics, etc.
--nrp, ——no-rest-positions

do not convert exact vertical position of rests.

--nsb, ——no-system-breaks
ignore system breaks.

--npl, -——no-page-layout
do not convert the exact page layout and breaks (shortcut for ~-nsb --npb --npm
options).
--npb, ——no-page-breaks
ignore page breaks.
--npm, --no-page-margins
ignore page margins.
--nsd, ——no-stem-directions
ignore stem directions from MusicXML, use lilypond’s automatic stemming instead.

-0, ——output=FILE
set the output file name to FILE. If file is -, the output will be printed to stdout.
If not given, xmlfile.ly will be used instead.

-r, ——relative
convert pitches in relative mode (default).

—--transpose=TOPITCH
the interval between pitch ¢ and TOPITCH to transpose by.

--sm, ——shift-meter=BEATS/BEATTYPE
change the length | duration of notes as a function of a given time signature to make
the score look faster or slower, (e.g. 4/4 or 2/2).

--tc, ——tab-clef=TABCLEFNAME
switch between two versions of tab clefs (tab and moderntab).

--sn --string-numbers=t [rue]/f [alse]
deactivate string number stencil with -—-string-numbers false. Default is true.

-v, ——verbose
be verbose.

—--version
show version number and exit.

-z, ——compressed
input file is a zip-compressed MusicXML file.

4.3.3 Invoking abc2ly

Note: This is not currently supported and may eventually be removed
from future versions of LilyPond.

ABC is a fairly simple ASCII based format. It is described at the ABC site:
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http://www.walshaw.plus.com/abc/learn.html.

abc2ly translates from ABC to LilyPond. It is invoked as follows:
abc2ly [option]... abc-file

The following options are supported by abc21ly:

-b, ——beams=None

preserve ABC’s notion of beams
-h, —-help

this help

-0, ——output=file

set output file name to file.
-8, ——strict

be strict about success

--version
print version information.
There is a rudimentary facility for adding LilyPond code to the ABC source file. For example;
%hHLY voices \set autoBeaming = ##f

This will cause the text following the keyword ‘voices’ to be inserted into the current voice
of the LilyPond output file.

Similarly,
%ALY slyrics more words

will cause the text following the ‘slyrics’ keyword to be inserted into the current line of lyrics.

Known issues and warnings

The ABC standard is not very ‘standard’. For extended features (e.g., polyphonic music) differ-
ent conventions exist.

Multiple tunes in one file cannot be converted.
ABC synchronizes words and notes at the beginning of a line; abc21y does not.

abc21ly ignores the ABC beaming.
4.3.4 Invoking etf2ly

Note: This is not currently supported and may eventually be removed
from future versions of LilyPond.

ETF (Enigma Transport Format) is a format used by Coda Music Technology’s Finale prod-
uct. etf21y will convert part of an ETF file to a ready-to-use LilyPond file.

It is invoked from the command line as follows;
etf2ly [option]... etf-file

Note that by ‘command line’, we mean the command line of the operating system. See
Section 4.3 [Converting from other formats|, page 48, for more information about this.

The following options are supported by etf21ly:

-h, —-help
this help

-0, ——output=FILE
set output file name to FILE
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—--version
version information

Known issues and warnings

The list of articulation scripts is incomplete. Empty measures confuse etf21ly. Sequences of
grace notes are ended improperly.

4.3.5 Other formats

LilyPond itself does not come with support for any other formats, but some external tools can
also generate LilyPond files. These are listed in Section “Easier editing” in General Information.

4.4 LilyPond output in other programs

This section shows methods to integrate text and music, different than the automated method
with 1ilypond-book.

4.4.1 LuaTpX

As well as 1ilypond-book to integrate LilyPond output, there is an alternative program that can
be used when using LuaTgX called lyluatex (https://github.com/jperon/lyluatex/blob/
master/README.md).

4.4.2 OpenOffice and LibreOffice

LilyPond notation can be added to OpenOffice.org and LibreOffice with OOoLilyPond
(https://github.com/openlilylib/L0-1y), an OpenOffice.org extension that converts
LilyPond files into images within OpenOffice.org documents. OOoLilyPond (OLy) works with
recent versions of LibreOffice and OpenOffice. Older versions should work as well. It has even
been tested with OpenOffice 2.4 without issues.

4.4.3 ly2video

Using the Python script 1y2video (https://github.com/aspiers/ly2video) it is possible to
create videos that contain a horizontally scrolling score synchronized with a MIDI-generated
audio rendering of the music. It is also possible to synchronize the video of the scrolling music
notation with a previously recorded audio track of the same music, such as a live performance,
even if the audio uses tempo rubato or is not precisely metronomic.

4.4.4 Other programs

When integrating LilyPond scores into documents in other software, you have to effectively
mimick how 1ilypond-book runs lilypond.

Here we discuss how to create PNG images for use with online formats similar to HTML, and
PDF and EPS for print-out formats similar to PDF.

PDF documents are usually formatted to enable printing. This means that long pieces of
music must be distributed over several pages. For this mode of operation, invoke 1ilypond as

lilypond -dseparate-page-formats=pdf myfile.ly
This creates myfile-1.pdf, myfile-2.pdf, ..., each containing a single page.

For embedding the images in a PostScript file, you can create EPS files, us-
ing -dseparate-page-formats=eps. In this case, you may also want to specify
-dno-gs-load-fonts -dinclude-eps-fonts, otherwise the EPS files will not render if they are
copied to another computer.

HTML documents are not printed, so they usually don’t have to worry about splitting music
images across page breaks, and you can use a single (possibly very tall) image to represent a
long score. This can be achieved with
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lilypond -dtall-page-formats=png myfile.ly
yielding a myfile.png that has all the pages of myfile.ly stacked vertically.

Specifying either -dseparate-page-formats or -dtall-page-formats suppresses the stan-
dard output mode (single file with multiple pages) and the associated --formats option. Both
options take a comma-separated list of formats and can be specified together, e.g.

lilypond -dseparate-page-formats=eps,pdf -dtall-page-formats=png,svg myfile.ly

To reduce the margins around the pages pass the -dno-use-paper-size-for-page option
to crop extraneous whitespace. The following paper settings will elide page numbers and other
footers that enlarge the page.

\paper{
indent=0\mm
oddFooterMarkup=##f
oddHeaderMarkup=##f
bookTitleMarkup = ##f
scoreTitleMarkup = ##f

. music ...

The above discusses how pages are dumped into output files, but for music integrated into
text, you often don’t want full pages (possibly including page numbers, margins etc.), but rather
lines of music. This is achieved by including 1ilypond-book-preamble.ly before a fragment of
music. This makes a toplevel \score block render into lines of music rather than pages.

If you need to quote many fragments from a large score, you can also use the clip systems
feature, see Section “Extracting fragments of music” in Notation Reference.

4.5 Independent includes

Some users have produced files that can be \included with LilyPond to produce certain effects
and those listed below are part of the LilyPond distribution. Also see Section “Working with
input files” in Notation Reference.

4.5.1 MIDI articulation

The Articulate (http://www.nicta.com.au/articulate) project is an attempt to enhance Lily-
Pond’s MIDI output and works by adjusting note lengths (that are not under slurs) according
to the articulation markings attached to them. For example, a ‘staccato’ halves the note value,
‘tenuto’ gives a note its full duration and so on. See Section “Enhancing MIDI output” in
Notation Reference.
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5 Suggestions for writing files

Now you're ready to begin writing larger LilyPond input files — not just the little examples in
the tutorial, but whole pieces. But how should you go about doing it?

As long as LilyPond can understand your input files and produce the output that you want, it

doesn’t matter what your input files look like. However, there are a few other things to consider
when writing LilyPond input files.

What if you make a mistake? The structure of a LilyPond file can make certain errors easier
(or harder) to find.

What if you want to share your input files with somebody else? In fact, what if you want
to alter your own input files in a few years? Some LilyPond input files are understandable
at first glance; others may leave you scratching your head for an hour.

What if you want to upgrade your LilyPond file for use with a later version of LilyPond?
The input syntax changes occasionally as LilyPond improves. Most changes can be done au-
tomatically with convert-1y, but some changes might require manual assistance. LilyPond
input files can be structured in order to be easier (or harder) to update.

5.1 General suggestions

Here are a few suggestions that can help to avoid (and fix) the most common problems when
typesetting:

Always include a \version number in your input files no matter how small they are. This
prevents having to remember which version of LilyPond the file was created with and is
especially relevant when Chapter 2 [Updating files with convert-1y|, page 19, command
(which requires the \version statement to be present); or if sending your input files to
other users (e.g., when asking for help on the mail lists). Note that all of the LilyPond
templates contain \version numbers.

For each line in your input file, write one bar of music. This will make debugging any
problems in your input files much simpler.

Include bar checks, bar number checks, as well as octave checks (see Section “Bar and bar
number checks” in Notation Reference and Section “Octave checks” in Notation Reference).
Including ‘checks’ of this type in your input files will help pinpoint mistakes more quickly.
How often checks are added will depend on the complexity of the music being typeset. For
simple compositions, checks added at a few at strategic points within the music can be
enough but for more complex music, with many voices and/or staves, checks may be better
placed after every bar.

Add comments within input files. References to musical themes (i.e. ‘second theme in
violins’, ‘fourth variation,” etc.), or simply including bar numbers as comments, will make
navigating the input file much simpler especically if something needs to be altered later on
or if passing on LilyPond input files to another person.

Add explicit note durations at the start of ‘sections’. For example, c4 d e f instead of just
c d e f can make rearranging the music later on simpler.

Learn to indent and align braces and parallel music. Many problems are often caused
by either ‘missing’ braces. Clearly indenting ‘opening’ and ‘closing’ braces (or << and >>
indicators) will help avoid such problems. For example;
\new Staff {
\relative {
rd g'8 g c8 c4 d |
e4 r8 |
% Ossia section
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<<
{f8cc |}
\new Staff {

f8 f c |

+

>>

rd |

}

b

is much easier to follow than;

\new Staff { \relative { r4 g'8 g c4 c8 d | e4 18
% Ossia section
<< { f8 c ¢ } \new Staff { f8 f c } > r4 | } }

e Keep music and style separate by putting overrides in the \layout block;

\score {

...music...

\layout {

\override TabStaff.Stemstencil = ##f
+
t

This will not create a new context but it will apply when one is created. Also see Section
“Saving typing with variables and functions” in Learning Manual, and Section “Style sheets”
in Learning Manual.

5.2 Typesetting existing music

If you are entering music from an existing score (i.e., typesetting a piece of existing sheet music),

e Enter the manuscript (the physical copy of the music) into LilyPond one system at a time
(but still only one bar per line of text), and check each system when you finish it. You
may use the showLastLength or showFirstLength properties to speed up processing — see
Section “Skipping corrected music” in Notation Reference.

e Define mBreak = { \break } and insert \mBreak in the input file whenever the manuscript
has a line break. This makes it much easier to compare the LilyPond music to the original
music. When you are finished proofreading your score, you may define mBreak = { } to
remove all those line breaks. This will allow LilyPond to place line breaks wherever it feels
are best.

e When entering a part for a transposing instrument into a variable, it is recommended that
the notes are wrapped in

\transpose c natural-pitch {...}

(where natural-pitch is the open pitch of the instrument) so that the music in the variable
is effectively in C. You can transpose it back again when the variable is used, if required, but
you might not want to (e.g., when printing a score in concert pitch, converting a trombone
part from treble to bass clef, etc.). Mistakes in transpositions are less likely if all the music
in variables is at a consistent pitch.

Also, only ever transpose to/from C. That means that the only other keys you will use are
the natural pitches of the instruments - bes for a B-flat trumpet, aes for an A-flat clarinet,
etc.
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5.3 Large projects

When working on a large project, having a clear structure to your lilypond input files becomes
vital.

e Use a variable for each voice, with a minimum of structure inside the definition. The
structure of the \score section is the most likely thing to change; the violin definition is
extremely unlikely to change in a new version of LilyPond.

violin = \relative {
g'4 c'8. el6

}

\score {

\new GrandStaff {
\new Staff {
\violin

}

+
+
e Separate tweaks from music definitions. This point was made previously, but for large
projects it is absolutely vital. We might need to change the definition of fthenp, but then
we only need to do this once, and we can still avoid touching anything inside violin.
fthenp = _\markup{
\dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p }
violin = \relative {
g'4\fthenp c'8. el16
+

5.4 Troubleshooting

Sooner or later, you will write a file that LilyPond cannot compile. The messages that LilyPond
gives may help you find the error, but in many cases you need to do some investigation to
determine the source of the problem.

The most powerful tools for this purpose are the single line comment (indicated by %) and the
block comment (indicated by %{. . .%}). If you don’t know where a problem is, start commenting
out huge portions of your input file. After you comment out a section, try compiling the file
again. If it works, then the problem must exist in the portion you just commented. If it doesn’t
work, then keep on commenting out material until you have something that works.

In an extreme case, you might end up with only

\score {
<<
% \melody
% \harmony

% \bass
>>

\layout{}
}

(in other words, a file without any music)

If that happens, don’t give up. Uncomment a bit — say, the bass part — and see if it works.
If it doesn’t work, then comment out all of the bass music (but leave \bass in the \score
uncommented.

bass = \relative {
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Al
c'dccc
dddd
/3

t

Now start slowly uncommenting more and more of the bass part until you find the problem
line.

Another very useful debugging technique is constructing Section “Tiny examples” in General
Information.

5.5 Make and Makefiles

Pretty well all the platforms LilyPond can run on support a software facility called make. This
software reads a special file called a Makefile that defines what files depend on what others
and what commands you need to give the operating system to produce one file from another.
For example the makefile would spell out how to produce ballad.pdf and ballad.midi from
ballad.ly by running LilyPond.

There are times when it is a good idea to create a Makefile for your project, either for your
own convenience or as a courtesy to others who might have access to your source files. This is
true for very large projects with many included files and different output options (e.g., full score,
parts, conductor’s score, piano reduction, etc.), or for projects that require difficult commands
to build them (such as 1ilypond-book projects). Makefiles vary greatly in complexity and
flexibility, according to the needs and skills of the authors. The program GNU Make comes
installed on GNU /Linux distributions and on macOS, and it is also available for Windows.

See the GNU Make Manual for full details on using make, as what follows here gives only a
glimpse of what it can do.

The commands to define rules in a makefile differ according to platform; for instance the
various forms of GNU/Linux and macOS use bash, while Windows uses cmd. Note that on
macOS, you need to configure the system to use the command-line interpreter. Here are some
example makefiles, with versions for both GNU/Linux/macOS and Windows.

The first example is for an orchestral work in four movements with a directory structure as
follows:

Symphony/

|-- MIDI/

| -— Makefile

| -- Notes/

| |-- cello.ily
|-- figures.ily
|-- horn.ily
|-- oboe.ily

|-- trioString.ily
|-- viola.ily

|-- violinOne.ily
-- violinTwo.ily

| -- symphony-cello.ly

| -- symphony-horn.ly

| -- symphony-oboe.ly

| -- symphony-viola.ly

| -- symphony-violinOne.ly
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| "—— symphony-violinTwo.ly
| -— Scores/
| | -- symphony.ly
| | -- symphonyI.ly
| |- symphonyII.ly
| | -— symphonyIII.ly
| -- symphonyIV.ly
"—— symphonyDefs.ily
The .1y files in the Scores and Parts directories get their notes from .1ily files in the Notes
directory:
%ohts top of file "symphony-cello.ly"
\include "../symphonyDefs.ily"
\include "../Notes/cello.ily"

The makefile will have targets of score (entire piece in full score), movements (individual
movements in full score), and parts (individual parts for performers). There is also a target
archive that will create a tarball of the source files, suitable for sharing via web or email. Here
is the makefile for GNU/Linux or macOS. It should be saved with the name Makefile in the
top directory of the project:

Note: When a target or pattern rule is defined, the subsequent lines
must begin with tabs, not spaces.

# the name stem of the output files

plece := symphony

# The command to run lilypond

LILY_CMD := lilypond -ddelete-intermediate-files \
—dno-point-and-click

# The suffixes used in this Makefile.
.SUFFIXES: .ly .ily .pdf .midi

.DEFAULT_GOAL := score

PDFDIR := PDF
MIDIDIR := MIDI

# Input and output files are searched in the directories listed in
# the VPATH variable. All of them are subdirectories of the current
# directory (given by the GNU make variable “CURDIR™).
VPATH := \

$(CURDIR) /Scores \

$(CURDIR) /Parts \

$ (CURDIR) /Notes \

$ (CURDIR) /$ (PDFDIR) \

$ (CURDIR) /$ (MIDIDIR)

# The pattern rule to create PDF and MIDI files from a LY input file.
# The .pdf output files are put into the "PDF" subdirectory, and the
# .midi files go into the "MIDI ™ subdirectory.

h.pdf %.midi: %.ly | $(PDFDIR) $(MIDIDIR)

$(LILY_CMD) $< # this line begins with a tab
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mv "$*x.pdf" $(PDFDIR)/ # this line begins with a tab
mv "$x.midi" $(MIDIDIR)/ # this line begins with a tab

$ (PDFDIR) :
mkdir $(PDFDIR)

$(MIDIDIR) :
mkdir $(MIDIDIR)

common := symphonyDefs.ily
notes := \

cello.ily \

horn.ily \

oboe.ily \

viola.ily \

violinOne.ily \
violinTwo.1ily

# The dependencies of the movements.
$(piece)I.pdf: $(piece)I.ly $(notes) $(common)
$(piece)II.pdf: $(piece)Il.ly $(notes) $(common)
$(piece) III.pdf: $(piece)IIIl.ly $(notes) $(common)
$(piece)IV.pdf: $(piece)IV.ly $(notes) $(common)

# The dependencies of the full score.
$(piece) .pdf: $(piece).ly $(notes) $(common)

# The dependencies of the parts.

$(piece)-cello.pdf: $(piece)-cello.ly cello.ily $(common)
$(piece)-horn.pdf: $(piece)-horn.ly horn.ily $(common)
$(piece)-oboe.pdf: $(piece)-oboe.ly oboe.ily $(common)
$(piece)-viola.pdf: $(piece)-viola.ly viola.ily $(common)
$(piece)-violinOne.pdf: $(piece)-violinOne.ly violinOne.ily $(common)
$(piece)-violinTwo.pdf: $(piece)-violinTwo.ly violinTwo.ily $(common)

# Type "make score” to generate the full score of all four
# movements as one file.

.PHONY: score

score: $(piece).pdf

# Type "make parts”™ to generate all parts.
# Type "make symphony-foo.pdf  to generate the part for instrument 'foo'.
# Example: "make symphony-cello.pdf’.
.PHONY: parts
parts: $(piece)-cello.pdf \
$(piece)-violinOne.pdf \
$(piece)-violinTwo.pdf \
$(piece)-viola.pdf \
$(piece)-oboe.pdf \
$(piece)-horn.pdf
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# Type "make movements  to generate files for the
# four movements separately.
.PHONY: movements
movements: $(piece)I.pdf \
$(piece)II.pdf \
$(piece)III.pdf \
$(piece)IV.pdf

all: score parts movements

There are special complications on the Windows platform. After downloading and installing
GNU Make for Windows, you must set the correct path in the system’s environment variables
so that the DOS shell can find the Make program. To do this, right-click on "My Computer,"
then choose Properties and Advanced. Click Environment Variables, and then in the System
Variables pane, highlight Path, click edit, and add the path to the GNU Make executable file,
which will look something like this:

C:\Program Files\GnuWin32\bin

The makefile itself has to be altered to handle different shell commands and to deal with
spaces that are present in some default system directories. Windows also has a different default
extension for midi files.

## WINDOWS VERSION

##

plece := symphony

LILY CMD := lilypond -ddelete-intermediate-files \
-dno-point-and-click

#get the 8.3 name of CURDIR (workaround for spaces in PATH)
workdir := $(shell for /f "tokens=x" %%b in ("$(CURDIR)") \
do @echo %%~sb)

.SUFFIXES: .ly .ily .pdf .mid
.DEFAULT_GOAL := score

PDFDIR := PDF
MIDIDIR := MIDI

VPATH := \
$(workdir)/Scores \
$(workdir) /Parts \
$ (workdir) /Notes \
$ (workdir) /$(PDFDIR) \
$ (workdir)/$ (MIDIDIR)

h.pdf %.mid: %.1ly | $(PDFDIR) $(MIDIDIR)
$(LILY_CMD) $< # this line begins with a tab
move /Y "$x.pdf" $(PDFDIR)/ # begin with tab
move /Y "$*x.mid" $(MIDIDIR)/ # begin with tab

$ (PDFDIR) :
mkdir $(PDFDIR)/
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$(MIDIDIR) :
mkdir $(MIDIDIR)/

notes := \

cello.ily \
figures.ily \
horn.ily \
oboe.ily \
trioString.ily \
viola.ily \
violinOne.ily \
violinTwo.1ily

common := symphonyDefs.ily

$(piece)I.pdf: $(piece)I.ly $(notes) $(common)
$(piece)II.pdf: $(piece)Il.ly $(notes) $(common)
$(piece) III.pdf: $(piece)III.ly $(notes) $(common)
$(piece)IV.pdf: $(piece)IV.ly $(notes) $(common)

$(piece) .pdf: $(piece).ly $(notes) $(common)

$(piece)-cello.pdf: $(piece)-cello.ly cello.ily $(common)
$(piece)-horn.pdf: $(piece)-horn.ly horn.ily $(common)
$(piece)-oboe.pdf: $(piece)-oboe.ly oboe.ily $(common)
$(piece)-viola.pdf: $(piece)-viola.ly viola.ily $(common)
$(piece)-violinOne.pdf: $(piece)-violinOne.ly violinOne.ily $(common)
$(piece)-violinTwo.pdf: $(piece)-violinTwo.ly violinTwo.ily $(common)

.PHONY: score
score: $(piece).pdf

.PHONY: parts

parts: $(piece)-cello.pdf \
$(piece)-violinOne.pdf \
$(piece)-violinTwo.pdf \
$(piece)-viola.pdf \
$(piece)-oboe.pdf \
$(piece)-horn.pdf

.PHONY: movements

movements: $(piece)I.pdf \
$(piece)II.pdf \
$(piece)III.pdf \
$(piece)IV.pdf

all: score parts movements
The next Makefile is for a 1ilypond-book document done in LaTeX. This project has an

index, which requires that the latex command be run twice to update links. Output files are
all stored in the out directory for .pdf output and in the htmlout directory for the html output.
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SHELL=/bin/sh

FILE=myproject

OUTDIR=out

WEBDIR=htmlout

VIEWER=acroread

BROWSER=firefox

LILYBOOK_PDF=lilypond-book --output=$(0UTDIR) --pdf $(FILE).lytex
LILYBOOK_HTML=1ilypond-book --output=$(WEBDIR) $(FILE).lytex
PDF=cd $(QUTDIR) && pdflatex $(FILE)

HTML=cd $(WEBDIR) && latex2html $(FILE)

INDEX=cd $(0UTDIR) && makeindex $(FILE)

PREVIEW=$ (VIEWER) $(OUTDIR)/$(FILE).pdf &

all: pdf web keep

pdf:

$(LILYBOOK_PDF) # begin with tab

$ (PDF) # begin with tab

$ (INDEX) # begin with tab

$ (PDF) # begin with tab

$ (PREVIEW) # begin with tab
web:

$(LILYBOOK_HTML) # begin with tab

$ (HTML) # begin with tab

cp -R $(WEBDIR)/$(FILE)/ ./ # begin with tab

$ (BROWSER) $(FILE)/$(FILE) .html & # begin with tab
keep: pdf

cp $(OUTDIR)/$(FILE) .pdf $(FILE).pdf # begin with tab
clean:

rm -rf $(OUTDIR) # begin with tab

web-clean:
rm -rf $(WEBDIR) # begin with tab

archive:
tar -cvvf myproject.tar \ # begin this line with tab
-—exclude=out/* \
--exclude=htmlout/* \
--exclude=myproject/* \
-—exclude=+midi \
——exclude=#*pdf \
--exclude=*~ \
../MyProject/*

TODO: make this thing work on Windows
The previous makefile does not work on Windows. An alternative for Windows users would

be to create a simple batch file containing the build commands. This will not keep track of
dependencies the way a makefile does, but it at least reduces the build process to a single
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command. Save the following code as build.bat or build.cmd. The batch file can be run at
the DOS prompt or by simply double-clicking its icon.

lilypond-book --output=out --pdf myproject.lytex

cd out

pdflatex myproject

makeindex myproject

pdflatex myproject

cd ..

copy out\myproject.pdf MyProject.pdf

See also

This manual: Section 1.2 [Command-line usage], page 1, Chapter 3 [Running 1ilypond-booXk],
page 24.
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Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.
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A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
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covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.
H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
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Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.
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In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.
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10.

11.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See https://
www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server.
A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set
of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ~ GNU
Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.
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